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ГЛАВА 1. ВВЕДЕНИЕ 
Криосфера Центральной Азии является жизненно важным источником пресной воды и ключевым ин-

дикатором изменения климата. Однако понимание влияния криосферы на водный баланс региона 

в прошлом и будущем остаётся неудовлетворительным (Grigori et al., 2006). Криосфера по-разному 

реагирует на изменение климата, что приводит к колебанию вклада талых вод в баланс водосборных 

бассейнов, и существенно влияет на динамику водообеспеченности горных районов, каскадно распро-

страняясь вниз по течению (Varis, 2014; Xenarious et al., 2019; Immerzeel et al., 2020; Nüsser, 2017; Nüsser 

et al., 2019). Это, в свою очередь, влияет на обеспеченность этих районов водными ресурсами, что усу-

губляет и без того повышенную уязвимость к колебаниям в водоснабжении и опасностям, связанным 

с климатом (Fay & Patel, 2008). С ростом населения и расширением водохозяйственной деятельности 

увеличение нагрузки на водные ресурсы (Pohl et al., 2017) создаёт ещё больше трудностей для адапта-

ции сельских районов (Garcia & Brown, 2009; Nüsser et al., 2019), что зачастую усугубляется нехваткой 

финансовых и институциональных ресурсов для этих районов (Manandhar et al., 2017). 

Прогнозы увеличения стока рек и уменьшения объёмов льда указывают на срочную необходимость 

разработки эффективных стратегий управления водными ресурсами. Тенденции потепления, наблюда-

емые в горах Тянь-Шаня с 1970-х годов (Aizen et al., 1995; Марченко и соавт., 2007; Forsythe et al., 2017), 

подчёркивают необходимость разработки адаптационных мер для решения проблемы изменения 

гидрологических режимов. Сложная динамика криосферы требует принятия целостного подхода 

к управлению водными ресурсами в Центральной Азии. Продолжающиеся усилия по мониторингу и 

капиталовложения в исследования процессов, происходящих в криосфере, жизненно важны для адап-

тации к меняющимся гидрологическим режимам и смягчения последствий изменения климата. Учиты-

вая разнообразные потребности в воде и проблемы, с которыми сталкиваются страны Центральной 

Азии, для улучшения точности прогнозов на будущее необходим совместный подход. Эффективный 

мониторинг криосферы должен опираться на существующие структуры, такие как Глобальная сеть мо-

ниторинга ледников (GTN-G) и Глобальная сеть мониторинга криолитозоны (GTN-P), и формировать 

основу для улучшения достоверности сценариев будущих изменений. В свою очередь, стратегии адап-

тации и смягчения последствий должны быть адаптированы к конкретным потребностям каждого ре-

гиона, страны и водосборного бассейна. Признавая неоднородность связанных с водными ресурсами 

проблем в каждой стране, трансграничное сотрудничество должно включать целевые инициативы для 

решения конкретных вопросов. 
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Например, Казахстан, характеризующийся наличием крупных озёр и рек, сталкивается с проблемами 

неравномерного распределения воды и внешней зависимости от водных ресурсов (Karatayev et al., 

2017). Кыргызстан в значительной степени полагается на криосферные ресурсы для целей орошения 

(Hill et al., 2017; Saks et al., 2022; FAO, 2016), а Узбекистан почти на 90 % использует талые воды снегов и 

ледников Памира и Тянь-Шаня для орошения (Жумаева, 2021). Туркменистан сталкивается с растущим 

дефицитом воды из-за изменения климата и находится в сильной зависимости от реки Амударья 

(Zonn, 2012). Таджикистан, являющийся крупным поставщиком воды в Амударью, в первую очередь 

зависит от водных ресурсов своей обширной криосферы (Духовный и соавт., 2014). В будущем эти спе-

цифические для каждой страны проблемы будут только возрастать. Первостепенное значение будет 

иметь углубление понимания конкретных потребностей страны в улучшении управления водными 

ресурсами на основе более глубоких научных знаний об ожидаемых изменениях в основных водных 

ресурсах в условиях текущего и будущего изменения климата. 

Уникальное расположение Тянь-Шаня и Памира характеризуется неоднородной климатической сре-

дой, наличием высоких горных хребтов и обширных криосферных систем, включая сезонные снежные 

покровы, ледники и многолетнюю мерзлоту. Сложное взаимодействие этих элементов оказывает глу-

бокое влияние на обеспеченность региона водными ресурсами и создаёт разнообразные гидрологиче-

ские режимы, на которые влияют таяние снега, ледников и грунтовые воды. Айзен и соавт. оры (Aizen 

et al., 1995) классифицировали реки Тянь-Шаня по четырём гидрографическим режимам, характеризу-

ющихся различными процессами формирования стока: реки снегового питания, ледникового питания, 

дождевого питания и питания подземными водами, каждый из которых имеет уникальные характери-

стики стока. 

Численные модели широко используются для реконструкции процессов прошлых периодов и прогно-

зирования будущих реакций различных гидрологических режимов. Простые модели подходят для 

изучения региональных реакций криосферы, а также общих закономерностей и изменений в стоке 

талых вод при различных гидрологических режимах (Lutz et al., 2014; Immerzeel et al., 2015). 

Основным ограничением таких эффективных с вычислительной точки зрения моделей является невоз-

можность моделирования мелкомасштабных процессов используя производные эмпирические или 

статистические зависимости с фиксированными параметрами (Rounce et al., 2014). При использовании 

региональных моделей часто не учитываются соответствующие процессы (например, сублимация, 

теплоизоляционный эффект снега, пористость грунта, повторное замерзание талой воды), которые 

могут оказывать значительное влияние на представление эволюции состояния снежного покрова, 

фирна и льда во времени (Kronenberg et al., 2021). В частности, при нелинейных и плохо изученных 

обратных связях прогнозы на будущее могут быть очень неопределёнными. Более детальные и слож-

ные модели полезны для понимания и количественной оценки роли отдельных процессов, связываю-

щих атмосферу, криосферу и гидросферу (например, Mölg et al., 2014). Такие физически корректные 

модели могут лучше отразить цепочку процессов при изменении климата, влияющих на криосферу и 

её реакцию на выделение талых вод, в том числе нелинейных. Однако зачастую они требуют слишком 

большого объёма вычислений, включают большое количество калибровочных параметров, которые 

плохо поддаются ограничениям, требуют большого количества исходных данных, которые часто недо-

ступны для регионов со слабым охватом данными, и поэтому их применение ограничивается отдельны-

ми участками или точками. Таким образом, нам часто приходится искать компромисс между использо-

ванием эффективных, применимых в регионах моделей, которые значительно упрощают физические 

процессы и ориентированы на изучение воздействия, или физически корректных моделей, которые 

имеют сложное и более точное представление процессов, но применимы только на отдельных участ-

ках или даже точках. Сочетание обоих подходов является ключом к отражению и улучшению нашего 
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понимания будущих крупномасштабных последствий изменения криосферы, вызванных изменением 

климата. В данном докладе мы рассматриваем изменения в состоянии ледников и их влияние на ре-

сурсы пресной воды для различных бассейнов Центральной Азии до конца столетия. Мы используем 

результаты сильно параметризованной модели эволюции ледников. В разделе обсуждения мы связы-

ваем результаты моделирования, ориентированного на изучение воздействия, с более детальными 

исследованиями процессов. На следующем этапе мы используем улучшенные климатические времен-

ные ряды для прогнозирования изменений снежного покрова и снеготаяния, а также гидрологические 

модели, включающие данные гляциологических наблюдений и наблюдений за снежным покровом, 

чтобы лучше предсказать будущее влияние криосферы на обеспеченность Центральной Азии водными 

ресурсами. 

 

1.1. Современное состояние криосферы и её роль как 
основного источника воды в Центральной Азии 
Криосфера играет важнейшую роль в формировании гидрологического режима региона. Поскольку 

Центральная Азия сталкивается с насущными проблемами изменения климата, всестороннее понима-

ние его воздействия на криосферу, а также проактивные меры адаптации и смягчения этого воздей-

ствия будут иметь решающее значение для устойчивого управления водными ресурсами и укрепления 

сопротивляемости региона. 

Сезонный снежный покров является основным компонентом годового водного бюджета 

в Центральной Азии, обеспечивая более 74 % водности Сырдарьи и более 69 % — Амударьи (Armstrong 

et al., 2019). Для сравнения, вклад осадков составляет всего 23 %, а вклад ледникового льда в годовой 

сток этих рек составляет 2 % и 8 % соответственно (Armstrong et al., 2019). 

В сухой сезон с июля по сентябрь таяние ледников приобретает важнейшее значение в речном стоке. 

Вклад талых вод ледников в течение вегетационного периода может увеличиваться до 70–90 % (Huss & 

Hock, 2018; Saks et al., 2021). Реакция ледников в Центральной Азии неоднородна в зависимости от 

территории и времени, в следствие чего вклад талых вод варьируется от водосбора к водосбору, что 

влияет на водообеспеченность горных районов и водопользователей низовий. Эта изменчивость 

в сочетании с меняющимися в будущем режимами таяния ледников и экстремальными погодными 

явлениями делает задачу управления водными ресурсами чрезвычайно сложной. 

Помимо ледников, в Центральной Азии находится крупнейший в мире район горной многолетней 

мерзлоты. Занимаемая им площадь равна примерно 3,5 млн км², что составляет около 15 % от общей 

площади вечной мерзлоты в северном полушарии (Gruber, 2012). Изменения теплового режима мно-

голетней мерзлоты могут оказать значительное влияние на гидрологию, энергетический и влажност-

ный балансы поверхности земли, углеродный обмен между литосферой и атмосферой, экосистемы и 

инженерную инфраструктуру региона (Jin et al., 2021; Hjort et al., 2022). 

Казахстан. Изменение климата привело к изменению структуры твёрдых осадков, причём 

в исследованиях по Казахстану отмечается неоднородность таких изменений. Например, согласно од-

ним исследованиям в некоторых районах, таких как Алтай и Тянь-Шань, наблюдается сокращение про-

должительности и высоты снежного покрова (Zhou et al., 2017), а другие исследования показывают 

увеличение толщины снежного покрова в Тянь-Шане с 1961 по 2014 год (Li et al., 2019). По данным 

наблюдений гидрометеорологической службы Казахстана высота снежного покрова и водный эквива-

лент (в. э.) снега в горах Алтая за последние 30 лет увеличились на 72 % (Пиманкина и Такибаев, 2021). 

Данные наземных наблюдений и дистанционного зондирования показывают, что за последние 65 лет 
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горное оледенение в Казахстане сократилось примерно на 43 % по площади и на 65 % по объёму (Sev-

erskiy et al., 2016; Kapitsa et al., 2020; Kokarev et al., 2022; Горбунов и соавт., 2018). В настоящее время 

непрерывные измерения баланса массы, начатые в 1957 году, ведутся только для ледника Централь-

ный Туюксу в бассейне реки Малая Алматинка (WGMS, 2020). За период наблюдений 1958–2022 гг. 

ледник показывал преимущественно отрицательный баланс массы (-0,42 м в. э. в год) (Kapitsa et al., 

2020; WGMS, 2023). Для Тянь-Шаня и Памира Барандун и соавт. оры (Barandun et al., 2021) оценили 

средневзвешенный по площади баланс массы ледников в −0,23 ± 0,37 м в. э. в год с 1999/00 по 

2017/18 год. Наблюдения за температурой многолетней мерзлоты на трёх участках в 1974–1977 и 

1990–2009 гг. свидетельствуют о потеплении в казахстанской части гор Тянь-Шаня за последние 35 лет, 

причём повышение температуры составило от 0,38 °C до 0,68 °C на глубине 14–25 м (Марченко и со-

авт., 2007; Lin et al., 2010; Severskiy, 2017). Тенденции потепления температуры многолетней мерзлоты 

и воздуха указывают на то, что в ближайшие 20–30 лет температура многолетней мерзлоты может 

достичь почти нулевой отметки. 

Кыргызстан. Водные ресурсы региона в значительной степени зависят от снега, ледников и многолет-

ней мерзлоты, играющих важнейшую роль в обеспечении водой в засушливые летние периоды. Айзен 

и соавт. оры (Aizen et al., 1997) проанализировали данные о снеге со 110 станций за период с 1940 по 

1991 год и обнаружили уменьшение среднегодовой высоты снежного покрова на 8–14 см на высотах 

ниже 2000 м над уровнем моря и на 6–19 см на более высоких высотах. Данные долгосрочного мони-

торинга баланса массы, имеющие решающее значение для оценки состояния ледников, свидетель-

ствуют о негативной тенденции в изменении массы ледников, причём различные исследования указы-

вают на ежегодные потери в диапазоне от −0,16 до −0,61 м в. э. в год (Hoelzle et al., 2019; Barandun et 

al., 2018; Barandun et al., 2015; Hoelzle et al., 2017; Kenzhebaev et al., 2017; Kronenberg et al., 2016; Azisov 

et al., 2022). Несмотря на то, что в некоторые годы наблюдался положительный баланс, обусловлен-

ный кратковременными (или временными) благоприятными условиями, общая тенденция по несколь-

ким наблюдаемым ледникам указывает на увеличение абляции, опережающее накопление. Измере-

ния температуры в двух скважинах многолетней мерзлоты на глубине 30 м указывают на потепление 

примерно на 1°C в период с 1986 по 2024 год. Новые геофизические наблюдения в Кыргызстане пока-

зывают различные значения содержания льда для различных форм рельефа и позволят получить бо-

лее широкие оценки содержания замороженного льда в высокогорных условиях. 

Таджикистан. Ледники Таджикистана занимают площадь 8400 км², что составляет 6 % территории 

страны. Ледник Федченко, один из крупнейших за пределами полярных регионов (Lambrecht et al., 

2014), значительно потерял в толщине с 1928 года, причём скорость истончения увеличилась с 2000 

года (Lambrecht et al., 2018). По оценкам, баланс массы всего ледника отрицательный, и показатели 

баланса составили −0,27 м в. э. в год за период с 2000 по 2011 год и −0,51 м в. э. в год за период с 2011 

по 2016 год (Lambrecht et al., 2018). Криосфера Таджикистана неоднородно реагирует на изменение 

климата, что усложняет понимание ситуации с доступностью водных ресурсов и изменений в будущем. 

Отсутствие прямых наблюдений затрудняет понимание местных процессов, подчёркивая необходи-

мость усиленного мониторинга и моделирования для решения вопросов, связанных с растущими по-

требностями в воде. Прямых (in situ) наблюдений или данных о многолетней мерзлоте в Таджикистане 

мало, а существующие карты распространения многолетней мерзлоты часто основаны на упрощённых 

моделях, в которых упущены ключевые факторы, влияющие на встречаемость мерзлоты (например, 

Gruber & Mergili, 2013; S. Gruber, 2012). На Памире Мергили и соавт. оры (Mergili et al., 2012) определи-

ли около 84 % территории Горно-Бадахшанской автономной области как потенциальную многолетнюю 

мерзлоту, занимающую около 54 тыс. км². Горбунов (Горбунов, 1978) предположил, что спорадическая 

многолетняя мерзлота в Памиро-Алае начинается на высоте 3400–3800 м над уровнем моря, 

а многолетняя мерзлота — выше 4000 м над уровнем моря. Тем не менее, изучение и мониторинг 
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многолетней мерзлоты в Таджикистане находятся только на начальном этапе, поэтому необходимо 

приложить значительные усилия, чтобы достичь хорошего уровня понимания распределения много-

летней мерзлоты и содержания в ней льда. 

Узбекистан. Последние исследования указывают на уменьшение снежного покрова в Узбекистане, что 

подтверждается анализом спутниковых данных, показывающих уменьшение протяжённости и про-

должительности снежного покрова за последние десятилетия. Исторические тенденции выпадения 

осадков также свидетельствуют о некотором снижении, что позволяет ожидать уменьшения площади 

снежного покрова, особенно в водосборных бассейнах на меньших высотах (Третье национальное со-

общение Республики Узбекистан по РКИК ООН, 2016). Площадь ледников в Узбекистане, расположен-

ных в основном в бассейнах рек Кашкадарья, Пскем и Сурхандарья, значительно уменьшилась. 

В период с 1957 по 2010 год площадь оледенения сократилась на 14,4–56,7 %, при этом на фоне распа-

да более крупных ледников образовалось множество мелких ледников (Кудышкин и соавт., 2014). 

Данные дистанционного зондирования указывают на значительное сокращение объёма льда в этих 

бассейнах. Текущие исследования включают постоянный мониторинг ледника Баркрак Средний, един-

ственного ледника в Узбекистане, за которым ведётся непрерывное наблюдение и который демон-

стрирует тенденцию к ускорению потери массы (Hoelzle et al., 2017; проект CICADA, Фрибурский уни-

верситет и ALM-202107010). 

Неоднородная реакция криосферы на изменение климата требует проведения постоянного мониторин-

га для оценки её влияния на состояние водных ресурсов в Центральной Азии в будущем, и, следова-

тельно, того, как изменение климата повлияет на задачи управления водными ресурсами в каждой 

стране. Жизненно важно определить приоритеты текущих исследований и мониторинга для уточнения 

прогнозов и устранения неопределённостей в отношении элементов криосферы. Совместные между-

народные усилия крайне важны для разработки комплексных мер по обеспечению сохранности вод-

ных ресурсов, охране экосистем и связанной с ними безопасности населения в Центральной Азии. 

 

1.2. Изменение климата в Центральной Азии и его влияние 
на криосферу 
Регион Центральной Азии, включающий Казахстан, Кыргызстан, Таджикистан, Туркменистан и Узбеки-

стан, характеризуется засушливым и полузасушливым климатом со значительными перепадами тем-

ператур и сложным рельефом. Высоты колеблются от менее 150 м над уровнем моря до более 7000 м 

над уровнем моря в хребтах Тянь-Шаня и Памира (Чуб, 2007). Средняя температура воздуха колеблется 

в широких пределах: январские минимумы достигают −54 °C в Казахстане, а июльские максимумы — 

50 °C в пустыне Кызылкум. Годовое количество осадков также варьируется: на равнинах выпадает око-

ло 250 мм, в предгорьях – 250–500 мм, а в некоторых горных районах — до 2000 мм (Чуб, 2007). Около 

80 миллионов человек зависят от водных ресурсов, образующихся в этом регионе. Более 25 тысяч лед-

ников вносят значительный вклад в сток рек Амударья и Сырдарья, и служат индикаторами изменения 

климата (Barandun et al., 2020; Kriegel et al., 2013). Исследования с использованием глобальных клима-

тических моделей/моделей общей циркуляции (ГКМ/МОЦ) указывают на значительную тенденцию 

потепления атмосферы в Центральной Азии (от 3 °C до 11,4 °C к 2100 году) и уменьшение количества 

осадков, особенно в юго-восточной части региона (Ozturk et al., 2012; Ozturk et al., 2017). Климатиче-

ские сценарии, рассчитанные с применением даунскейлинга, предполагают повышение температуры 

до 7°C в северных районах Центральной Азии и изменение характера осадков: более влажные зимы на 

севере и более сухое лето в целом (Mannig et al., 2013; Huang et al., 2014). В ряде исследований также 

изучалась роль атмосферной циркуляции в экстремальных значениях осадков в условиях глобального 
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потепления. Чжао и соавт. оры (Zhao et al., 2018) обнаружили, что субтропическое западное струйное 

течение может сместиться на юг, что потенциально увеличит количество летних осадков в северных 

регионах, но внесёт неопределённость в других местах. Между тем, Рейерс и соавт. оры (Reyers et al., 

2013) спрогнозировали уменьшение годового количества осадков в бассейне реки Аксу. Негативное 

воздействие глобального потепления на ледники вызвало обеспокоенность по поводу перспектив 

обеспеченности водными ресурсами: прогнозируется значительное сокращение ледников в регионах 

Тянь-Шаня и Памира (Sorg et al., 2015; Kure et al., 2013). Однако прогнозы будущих изменений состоя-

ния ледников в регионе остаются крайне неопределёнными. 

Таким образом, Центральная Азия сталкивается с серьёзными последствиями изменения климата, 

включая отступление ледников, нехватку воды и опустынивание, что негативно сказывается на жизни 

общества и экосистем. Решение этих проблем требует улучшения управления водными ресурсами, 

развития устойчивого регионального сотрудничества и реализации эффективных стратегий управления 

климатическими рисками. 

 

1.3. Водные ресурсы Центральной Азии 
 

 

Рисунок 1.1.1. Схематическое изображение ресурсов поверхностных вод и их забора в Центральной 

Азии (Источник: Zoi Environment Network, 2010) 

Социально-экономическое развитие Центральной Азии в значительной степени зависит от ресурсов 

пресной воды, при этом страны связаны между собой трансграничными водными ресурсами (Абдул-

лаев и соавт., 2019). Около 6000 рек берут своё начало в горных районах, питаясь в основном за счёт 

таяния снега и ледников с хребтов Памир, Гиндукуш и Тянь-Шань (Духовный и соавт., 2014; Djumaboev 

et al., 2019; Armstrong et al., 2019). Амударья и Сырдарья — крупные реки региона, вносящие значи-
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тельный вклад в бассейн Аральского моря (таблица 1.3.1), однако их приток в Аральское море сокра-

тился примерно на 90 % в связи с ростом потребности в воде и изменением климата (Сафронова, 2009; 

Djumaboev et al., 2019). Таджикистан и Кыргызстан являются основными поставщиками воды в эти 

реки, в значительной степени зависящими от таяния ледников и снежного покрова (Saks et al., 2022; 

Aizen et al., 1995). В то время как роль таяния снега и ледников хорошо изучена, роль вечной мерзлоты 

как источника водных ресурсов остаётся малоизученной. Водные ресурсы Казахстана в основном пред-

ставлены поверхностными водами, при этом они в значительной степени зависят от внешних источни-

ков (Karatayev et al., 2017a). Сельское хозяйство потребляет около 75 % водных ресурсов (Достай, 2012; 

Медеу и соавт., 2020). В Кыргызстане насчитывается более 3500 рек, при этом значительная часть воды 

используется для орошения (почти 95 %), а промышленное и хозяйственно-питьевое водопотребление 

незначительно (Осмонбетова, 2021). 84 % общего потребления воды в Таджикистане используется 

в сельском хозяйстве (Toderich, 2004). Туркменистан в основном зависит от Амударьи, а забор воды 

регулируется международными соглашениями. Сельское хозяйство является крупнейшим потребите-

лем, на него приходится более 90 % водопотребления (Zonn, 2012). Узбекистан полагается на воды 

Амударьи и Сырдарьи, при этом на ирригацию приходится около 86 % водопотребления (Государ-

ственный водный кадастр Узбекистана, 2014). Афганистан является ключевым поставщиком воды 

в Амударью, поскольку река берёт начало из озера Зоркуль в пределах его границ. Однако из-за огра-

ниченного развития сельского хозяйства и промышленности, в значительной степени обусловленного 

десятилетиями конфликта, Афганистан исторически использовал лишь небольшую долю воды реки по 

сравнению со своими соседями по Центральной Азии. В 2022 году Афганистан приступил к реализации 

проекта строительства оросительного канала Кош-Тепа, что вызвало серьёзную обеспокоенность, 

в частности со стороны Узбекистана, поскольку это может иметь последствия для отрасли сельского 

хозяйства страны. В целом, распределение и управление водными ресурсами в Центральной Азии — 

сложный процесс, на который влияют изменчивость климата, экономическое развитие и межстрановые 

соглашения. 

 

Таблица 1.3.1 — Состав и объём основных ресурсов поверхностных вод Центральной Азии (Сафронова, 

2009) 

Страна Бассейн 
Амударьи км3/год 

Бассейн 
Сырдарьи км3/год 

Бассейн Аральского 
моря км3/год 

% 

Казахстан - 4,50 4,50 3,90 

Кыргызстан 1,90 27,40 29,30 25,30 

Таджикистан 62,90 1,10 64,00 55,40 

Туркменистан 2,78 - 2,78 2,40 

Узбекистан 4,70 4,14 8,84 7,60 

Афганистан 6,18 - 6,18 5,40 

Центральная Азия 78,46 37,14 115,60 100,00 

 

Изменение климата представляет угрозу для ледникового льда и водных ресурсов (рис. 1.1.2). Быстрое 

изменение состояния ледников повлияет на гидрологический режим горных водосборов: как смоде-

лировали Хусс и Хок (Huss and Hock, 2018), ожидается, что годовой сток достигнет максимума (из-за 

усиления таяния), а затем будет уменьшаться по мере отступления ледников. Время наступления тако-

го «пика водности» определяется современными объёмами льда (как в абсолютном выражении, так и 

по отношению к площади водосбора). Прогнозы предполагают увеличение стока талых вод криосферы 

весной и летом, что в сочетании с обильными дождями может привести к наводнениям в результате 

прорыва ледниковых озёр, селевым потокам и оползням, наносящим ущерб населённым пунктам и 
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сельскому хозяйству (Kaser et al., 2010; Huss and Hock, 2018; Bolch et al., 2011; Erokhin et al., 2018). И 

наоборот, сток в засушливые летние месяцы может неуклонно сокращаться к концу столетия из-за 

уменьшения объёма ледников (Hagg et al., 2007; Hagg et al., 2013; Huss and Hock, 2018; Kure et al., 2013). 

 

 

Рисунок 1.1.2. Схематическое изображение ожидаемых изменений стока при текущем ходе изменения 

климата: а) влияние на общий вклад талых вод ледников и б) сезонность водообеспеченности  

(Источник: IPCC, 2021) 

Эти прогнозы подчёркивают необходимость эффективного управления водными ресурсами и монито-

ринга баланса массы ледников в регионе. Продолжающиеся с 2010 года усилия направлены на вос-

становление практики мониторинга ледников in situ, что помогает валидации результатов модельных 

исследований и региональных оценок поведения ледников и их влияния на ресурсы пресной воды 

в Центральной Азии (Hoelzle et al., 2017, 2019; Schöne et al., 2013). 
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Вода снеготаяния 

Дождевая вода 

Грунтовые воды 

Сокращение ледника со временем 

зима   весна         лето       осень   зима зима   весна         лето       осень   зима зима   весна         лето       осень   зима 

день         ночь       день 
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ГЛАВА 2. ДАННЫЕ И МЕТОДЫ ИССЛЕДОВАНИЯ 
В данной работе мы опираемся на существующие региональные результаты моделирования баланса 

массы ледников, отступания ледников и стока, полученные с помощью Глобальной модели эволюции 

ледников (Global Glacier Evolution Model, GloGEM), разработанной Фрибурским университетом и ETH 

Zürich. GloGEM — это процессно-ориентированная модель, которая учитывает все гляциологические 

процессы и нацелена на применение во всём мире, хотя и рассчитывает конкретно отдельные ледники 

(Huss & Hock, 2015, 2018; Zekollari et al., 2019; Compagno et al., 2022). Для целей настоящего анализа мы 

анализируем результаты GloGEM, связанные с исследованием Боссонса и соавт. оров (Bossons et al., 

2023), для регионов 13 и 14 Рэндольфского кадастра ледников (Randolph Glacier Inventory, RGI), вклю-

чающих горные хребты Тянь-Шань и Памир. Ниже мы приводим краткое описание используемых дан-

ных и методов. Подробное описание модели можно найти в соответствующих публикациях (Huss & 

Hock, 2015, 2018; Bosson et al., 2023). 

 

2.1. Данные 
Данные о начальной протяжённости зоны обледенения, относящиеся примерно к 2000 году, получе-

ны из Рэндольфского кадастра ледников версии 6.0 (RGI, 2017). Гипсометрия поверхности для каждого 

ледника получена на основе пересечения контуров с цифровыми моделями рельефа Радиолокацион-

ной топографической миссии шаттла (Shuttle Radar Topography Mission, SRTM) (Jarvis et al., 2008). Для 

каждого ледника используется дискретизация на зоны высот поверхности с шагом 10 м. Топография 

подстилающей породы получена на основе консенсуса данных пяти моделей толщины льда (Farinotti 

et al., 2019). Эти модели толщины льда соответствуют подходу к оценке объёмного потока льда и 

принципам гидродинамической модели. При оценке в глобальном масштабе рассчитанные толщины 

хорошо согласуются с данными наблюдений (Farinotti et al., 2019). 

Работа Хьюгоннет и соавт. оров (Hugonnet et al., 2021) стала источником данных наблюдений за изме-

нением объёма льда каждого ледника в период с 2000 по 2020 год с использованием данных из не-

скольких источников для оценки глобальной потери массы ледников. Для расчёта геодезических ба-

лансов массы ледников в исследуемом регионе за период с 2000 по 2020 год авторы опирались 

в первую очередь на данные о высоте рельефа со спутника «усовершенствованный космический тер-

моэмиссионный и отражающий радиометр» (Advanced Spaceborne Thermal Emission and Reflection Ra-

diometer, ASTER). Хотя наблюдения со спутников, включая ASTER и CryoSat-2, обеспечивают ценные 

данные измерений высоты, временной охват может быть непоследовательным, что приводит 

к потенциальным пробелам при анализе (Nakamura et al., 2006). Кроме того, разрешение и качество 

спутниковых снимков могут влиять на точность этих измерений, что приводит к значительным неопре-

делённостям в оценках изменения объёма льда на основе этого набора данных, особенно для более 

коротких временных интервалов (Hugonnet et al., 2021). Тем не менее, этот набор данных остаётся од-

ним из наиболее последовательных и полных для целей оценки изменения объёма ледников за по-

следние два десятилетия в глобальном масштабе. 

Для проверки модели использовались данные наблюдений за балансом массы поверхности, получен-

ные в результате измерений in situ на отдельных ледниках, предоставленные Всемирной службой 

мониторинга ледников (WGMS, 2022). Однако для Центральной Азии эти наблюдения носят весьма 

ограниченный характер с точки зрения пространственного и временного охвата, что затрудняет надёж-

ную проверку модели для Тянь-Шаня и Памира, особенно учитывая полное отсутствие данных наблю-

дений для некоторых субрегионов (Barandun et al., 2021). 
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Для прогноза будущих событий мы используем климатические временные ряды месячных показате-

лей температуры воздуха и количества осадков по сетке с шагом 2 м, полученные с помощью цепочки 

из 56 климатических моделей (на базе 13 различных МОЦ) в рамках Фазы 6 проекта взаимного срав-

нения связанных моделей (Coupled Model Intercomparison Project Phase 6, CMIP6) (Eyring et al., 2016). 

Результаты расчётов МОЦ построены на основе трёх различных сценариев общих социально-

экономических путей (Shared Socioeconomic Pathways, SSP), описывающих возможное будущее влия-

ние на климат различных уровней выбросов парниковых газов (SSP1-2.6, SSP2-4.5, SSP5-8.5) (Meinshau-

sen et al., 2020). Сценарии разработаны на основе ряда прогнозов будущего роста населения, научно-

технического развития и реакции общества (Meinshausen et al., 2011). 

В сценарии SSP1-2.6, который представляет собой путь с низким уровнем выбросов для достижения 

значительного смягчения воздействий изменения климата, радиационное воздействие, согласно про-

гнозам, увеличится примерно на 2,6 Вт/м² к 2100 году по сравнению с доиндустриальным уровнем 

(IPCC, 2021). В этом сценарии особое внимание уделяется ориентации на устойчивое развитие, жёст-

кой климатической политике и переходу на возобновляемые источники энергии (Riahi et al., 2017). 

Сценарий SSP2-4.5 представляет собой путь со средним уровнем выбросов парниковых газов. Он 

предполагает увеличение радиационного воздействия примерно на 4,5 Вт/м² к 2100 году по сравне-

нию с доиндустриальным уровнем (IPCC, 2021). В этом сценарии основное внимание уделяется обес-

печению устойчивости при умеренном смягчении последствий изменения климата и адаптации к ним 

(Riahi et al., 2017). 

Согласно сценарию SSP5-8.5, который представляет собой путь высоких выбросов, к 2100 году радиа-

ционное воздействие увеличится примерно на 8,5 Вт/м² по сравнению с доиндустриальным уровнем 

(IPCC, 2021). Этот сценарий характеризуется быстрым экономическим ростом, значительной зависимо-

стью от ископаемого топлива и ограниченными усилиями по смягчению последствий изменения кли-

мата, что приведёт к значительным уровням выбросов парниковых газов (Riahi et al., 2017). 

Климатические временные ряды корректируются с использованием сетки месячных данных 

о температуре воздуха и осадках из реанализа ERA5, который обеспечивает комплексное представле-

ние климата и погодных условий прошлого (Hersbach et al., 2020). Для каждого ледника рассчитывают-

ся аддитивные (для температуры) и мультипликативные (для осадков) месячные смещения между 

ближайшей ячейкой сетки ERA5 и соответствующей ячейкой сетки МОЦ для данного ледника за пери-

од с 1980 по 2020 год. Эти смещения затем корректируются для учёта высотного распределения лед-

ников с использованием постоянных градиентов осадков и температуры. В течение прогнозного пери-

ода рассчитанные смещения, которые, как предполагается, остаются неизменными с течением време-

ни, накладываются на ряды МОЦ. Для дальнейшего уточнения данных значения температуры воздуха 

в МОЦ были скорректированы для учёта расхождений в годовой изменчивости между временными 

рядами ERA5 и МОЦ (Huss and Hock, 2015). Эта корректировка имеет решающее значение для обеспе-

чения достоверности калиброванных параметров модели таяния, используемых в прогнозах на основе 

МОЦ. Однако существенным ограничением является неопределённость в распределении изменчиво-

сти, представленной средствами реанализа, которая может вносить погрешности в скорректированные 

временные ряды МОЦ и в конечном итоге способствовать высокой неопределённости в прогнозах. 

 

2.2. Модель эволюции ледников и её калибровка 
Прогнозы будущих изменений объёма ледников и высвобождения талой воды были сделаны 

с помощью Глобальной модели эволюции ледников GloGEM (например, Hock and Huss, 2015, 2018, 

Compagno et al., 2021, 2022, Bosson et al., 2023). GloGEM — это модель для расчёта баланса массы и 
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связанных с ним изменений геометрии каждого ледника мира. Модель описывает основные процес-

сы, определяющие климатический баланс массы (Huss and Hock, 2015). Модель работает с высотными 

зонами с шагом 10 м в масштабе каждого отдельного ледника в регионе и имеет месячное временное 

разрешение, включая параметризацию субмесячной изменчивости температуры воздуха (Huss & Hock, 

2015). Климатический баланс массы — это чистое изменение массы ледника за определённый период 

времени, обычно оцениваемое за год или сезон. Он является важнейшим показателем реакции лед-

ника на изменчивость климата и используется здесь для моделирования изменения объёма ледника. 

Климатический баланс массы можно выразить как сумму всех процессов аккумуляции и абляции. Про-

цессы аккумуляции — это все процессы, которые способствуют увеличению массы ледника. Процессы 

абляции — это все процессы, которые приводят к уменьшению массы ледника. В Центральной Азии 

аккумуляция происходит в основном за счёт осадков в виде снега, снежных наносов, повторного за-

мерзания талых вод и схода лавин. Доминирующим процессом абляции является таяние, за которым 

следует сублимация в районах с преобладанием солнечного излучения. Скорость таяния и сублимации 

определяется температурой воздуха, интенсивностью солнечной радиации, альбедо поверхности и 

градиентом водного потенциала между поверхностью и атмосферой (Cuffy and Patterson, 2010). 

Для расчёта показателя таяния используется традиционная модель температурного индекса, которая 

позволяет проводить различие между процессами таяния снега и таяния льда с помощью двух различ-

ных эмпирических коэффициентов (Hock, 2003). Для моделирования накопления массы используется 

показатель количества твёрдых осадков как функция высоты над уровнем моря и температуры воздуха 

(Huss et al., 2009). Таким образом, модель относительно проста и в значительной степени зависит от 

того, что связь между температурой воздуха и таянием является линейной и постоянной во времени. 

Как правило, снег и лёд начинают таять, когда температура воздуха превышает 0 °C. Скорость таяния 

пропорциональна температуре воздуха и зависит от эмпирического коэффициента (градусо-суток). Эти 

коэффициенты различны для поверхностей снега или льда. Как правило, коэффициент градусо-суток 

выше для льда, что означает, что лёд тает быстрее снега при той же температуре из-за более низкого 

альбедо и, следовательно, большего поглощения энергии. Твёрдые осадки выпадают, когда темпера-

тура воздуха у поверхности превышает определённый порог, обычно 1,5 °C. При соблюдении этого 

условия на леднике осадки регистрируются как накопление. Замораживание жидкой воды в снеге или 

фирне при отрицательных температурах моделируется на основе показателей теплопроводности и 

латентного теплообмена (Huss & Hock, 2015). Другие процессы, такие как прирост или потеря массы 

в результате схода лавин, в явном виде не рассматриваются, но неявно учитываются при калибровке 

на основе данных о конкретном леднике. Эффектами воздействия солнечной радиации, выходящими 

за рамки процессов таяния льда и снега, пренебрегаем. Предполагается, что все процессы и связанные 

с ними эффекты ответной реакции находятся в устойчивой зависимости и в течение следующих 100 лет 

будут реагировать как при современных условиях. В модели не учитывается базальный баланс массы. 

Хотя в GloGEM есть модуль, учитывающий влияние и пространственно-временную динамику надледни-

кового обломочного покрова (Compagno et al., 2022), в данной версии модели он не использовался. 

Явления пульсации ледников также не рассматриваются. Для определения коэффициента градусо-

суток и модели замерзания необходимо задать тип поверхности (снег, фирн, лёд). Согласно Хоку и 

Хуссу (Hock and Huss, 2015), в начале процесса моделирования тип поверхности задаётся на конец лета 

путём установки фирновой линии по отметке средней высоты ледника, а ниже — голый лёд. В течение 

всего года моделирования тип поверхности обновляется ежемесячно для каждой высотной зоны на 

основе климатического баланса массы. Если суммарный баланс положительный, поверхность назнача-

ется снегом. И наоборот, если он отрицательный, что указывает на то, что весь снег растаял, поверх-

ность классифицируется как голый лёд или фирн. Поверхность классифицируется как фирн, если сред-

негодовой баланс за последние пять лет положительный, в противном случае поверхность классифи-
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цируется как лёд. Этот метод обеспечивает эффективную аппроксимацию пространственных и вре-

менных вариаций площади фирнового покрова, не требуя полной модели уплотнения фирнового по-

крова (Huss and Hock, 2015). 

Динамическая реакция каждого ледника на изменение массы моделируется с помощью эмпирической 

зависимости, которая описывает изменение толщины слоя льда как функцию нормализованного диа-

пазона высот (Huss et al., 2010). В конце каждого масс-балансового года модель корректирует толщину, 

уровень высоты поверхности и протяжённость ледника в зависимости от рассчитанного для этого года 

общего изменения массы соответствующего ледника. Предыдущие оценки показывают, что такой па-

раметризованный подход к моделированию трёхмерной эволюции ледников хорошо согласуется 

с более сложным ледодинамическим моделированием (Huss et al., 2010). Более подробную информа-

цию об описании модели и параметризации различных процессов, учитываемых в GloGEM, см. 

в работе Хусса и Хока (Huss and Hock, 2015). 

Сток рассчитывается как сумма таяния снега/льда и жидких осадков минус повторное замерзание на 

виртуальной водосборной площади, которая соответствует начальной протяжённости каждого отдель-

ного ледника. В начале периода моделирования этот водосбор на 100% покрыт ледником, но 

в процессе отступления ледника он превращается в бассейн с частичным ледниковым покровом. Та-

ким образом, данный подход позволяет рассмотреть стабильную область формирования стока, т. е. 

верховья крупных водотоков, но не позволяет напрямую судить о более масштабных гидрологических 

процессах, включающих также фактор растительного покрова и динамику грунтовых вод, которые мо-

гут быть рассмотрены только с помощью полной гидрологической модели. 

Одной из основных проблем, стоящих перед региональными и глобальными моделями ледников, 

является их калибровка. Этот процесс крайне важен, поскольку ни даунскейлинг метеорологических 

переменных не позволяет точно отразить условия на конкретном участке, ни модели ледников не мо-

гут эффективно и точно отразить сложные процессы, влияющие на каждый ледник (Huss and Hock, 

2015). Большинство глобальных моделей ледников опираются на данные измерений баланса массы in 

situ в качестве основного источника калибровочных данных (Radić and Hock, 2011; Giesen and 

Oerlemans, 2013). В некоторых исследованиях параметры модели были дополнительно уточнены для 

согласования с оценками региональных изменений массы, полученными на основе экстраполирован-

ных наблюдений за ледниками (Radić et al., 2014). Однако калибровка такой модели для Центральной 

Азии с использованием данных баланса массы отдельных ледников in situ сопряжена 

с определёнными трудностями. Прямые наблюдения часто ограничены относительно небольшими 

ледниками, а регионы со значительным ледяным покровом часто недостаточно охвачены наблюдени-

ями (Huss and Hock, 2015). Таким образом, модель GloGEM была откалибрована для каждого ледника 

отдельно по данным наблюдений дистанционного зондирования за изменением объёма льда 

в период с 2000 по 2019 год (Hugonnet et al., 2021) в соответствии с многоступенчатой процедурой ка-

либровки (Huss and Hock, (2015). Если смоделированный баланс удельной массы всего ледника согла-

суется с балансом, представленным в работе Хьюгоннета и соавт. оров (Hugonnet et al., 2021), 

в пределах порога ±0,1 м водного эквивалента в год, считается, что ряды данных метеорологических 

воздействий хорошо описывают климатические условия для данного ледника. Таким образом, калиб-

ровка интерпретируется как второй шаг даунскейлинга, который устраняет влияние неточностей, при-

сущих средствам моделирования региональных климатических воздействий (Bosson et al., 2023). Мо-

делируемые компоненты баланса массы были детально проверены с помощью независимых наблю-

дений (например, баланс массы, изменение площади) (Huss and Hock, 2015, 2018). Модель воспроиз-

водит независимые наборы данных наблюдаемого баланса массы по всему миру (WGMS, 2022), как для 
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годовой потери массы ледников, так и для сезонных компонентов, а также и в зависимости от высоты 

(Bosson et al., 2023). 

После калибровки модели на период с 2000 по 2020 год она запускается с данными реанализа ERA5 на 

период с 1980 по 2020 год, а затем с данными МОЦ до 2100 года. Затем оцениваются изменения ба-

ланса массы для всех районов за период с 1980 по 2100 год. Прогнозы будущего отступления ледников, 

выпол- 

ненные с помощью GloGEM, обеспечивают данные об изменениях баланса массы, площади, объёма и 

стока ледников в месячном/годовом разрешении для каждого района (Тянь-Шань/Памир) до 2100 

года. 

Границы водосборных бассейнов для определения вклада талых вод ледников определяются 

в соответствии с гидрологическим маршрутом в цифровой модели рельефа поверхности (табл. 2.2.1 и 

2.2.2) (Ehlschlaeger, 1989). Водосборные бассейны включают все крупнейшие реки, вносящие вклад 

в сток Амударьи и Сырдарьи, а также другие крупные независимые реки Центральной Азии (такие как 

Зеравшан) и бессточные бассейны озёр Иссык-Куль в Кыргызстане и Каракуль в Таджикистане. Чтобы 

повысить достоверность результатов, для каждого водосбора мы взяли медианный результат модели-

рования GloGEM для 13 МОЦ. 

Таблица 2.2.1 — Описание каждого водосбора, использованного для расчёта изменения объёма льда и 

вклада талых вод ледников в общий речной сток 

№ Название 
водосбора 

Описание Охват Другие водосборные 
бассейны выше по течению, 
которые вносят вклад талой 

воды в данный водосбор 

01 Амударья Амударья ниже 
притока Кафирниган 

Прочее: только на территории 
Афганистана 

02, 03, 04, 05, 06, 07, 08, 09, 
10, 11, 12, 13, 14, 15 

02 Кафирниган Кафирниган Ледники: Якарча; города: Душанбе  

03 Пяндж Пяндж выше слияния 
с Вахшем 

Города: Кулоб 04, 05, 06, 07, 08, 09, 10 

04 Ванчоб Ванчоб Ледники: Медвежий  

05 Пяндж Пяндж выше притока 
Ванчоб 

Ледники: Язгулемский 06, 07, 08, 09, 10 

06 Бартанг Бартанг Города: Мургаб; прочее: Сарезское 
озеро 

 

07 Гунт Гунт Ледники: № 457; города: Хорог  

08 Пяндж Пяндж выше притока 
Гунт 

Города: Ишкашим 09, 10 

09 Вахан Вахан Прочее: Ваханский коридор  

10 Памир Памир Прочее: Ваханский коридор  

11 Вахш Вахш выше слияния 
с Пянджем 

Прочее: Нурекское водохранилище 12, 13, 14, 15 

12 Хингов Хингов Ледники: Гармо  

13 Вахш Вахш выше притока 
Хингов 

Прочие: Алайский хребет на юге 14, 15 

14 Муксу Муксу Ледники: Федченко, Кызылсу; прочее: 
пик Ленина на юге 

 

15 Кызылсу Кызылсу Ледники: Абрамова; прочее: Алайская 
долина, пик Ленина на севере 

 

16 Сырдарья Сырдарья в районе 
Шардаринского 
водохранилища 

Ледники: Баркрак; города: Худжанд, 
Ташкент; прочее: Шардаринское 
водохранилище 

17, 18, 19, 20 

17 Сырдарья Сырдарья в районе 
Кайраккумского 
водохранилища 

Города: Коканд; прочее: Ферганская 
долина, Кайраккумское водохранилище, 
Алайский хребет на севере 

18, 19, 20 

18 Карадарья Карадарья Города: Узген, Андижан  

19 Нарын Нарын выше слияния 
с Карадарьёй 

Города: Нарын; прочее: Токтогульское 
водохранилище 

20 
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20 Карасай Карасай Ледники: Батыш-Сук, Григорьева, 
№ 354, Сары-Тор, Борду; прочее: 
рудник Кумтор 

 

21 Зеравшан Зеравшан Ледники: Зеравшанский, ГГП  

22 Чу Чу Ледники: Голубинского; города: Бишкек  

23 Каскелен Каскелен Ледники: Туюксу; города: Алматы  

24 Каракуль Каракуль Ледники: Зульмарт, Кон-Чукурбаши; 
прочее: озеро Каракуль 

 

25 Иссык-Куль Иссык-Куль Ледники: № 599, Кара-Баткак, Тургень-
Аксу; прочее: озеро Иссык-Куль 

 

 

Таблица 2.2.2 — Общая площадь водосбора, совокупная общая площадь водосбора, включая водосбо-

ры верховий, площадь оледенения в каждом водосборе, совокупная площадь оледенения с учётом 

водосборов верховий и площадь оледенения в водосборе и с учётом водосборов верховий 

в процентах 

№ Название 
водосбора 

Общая 
площадь 

водосбора 
(км²) 

Совокупная 
общая 

площадь 
(км²) 

Площадь 
оледенения 

(км²) 

Совокупная 
площадь 

оледенения 
(км²) 

Площадь 
оледенения 

(%) 

Совокупная 
площадь 

оледенения 
(%) 

01 Амударья 41 363 208 328 98 9714 0,24 4,66 

02 Кафирниган 11 347 11 347 93 93 0,82 0,82 

03 Пяндж 48 416 116 795 741 5538 1,53 4,74 

04 Ванчоб 2096 2096 342 342 16,34 16,34 

05 Пяндж 8469 66 283 449 4455 5,31 6,72 

06 Бартанг 28 014 28 014 1684 1684 6,01 6,01 

07 Гунт 13 690 13 690 651 651 4,76 4,76 

08 Пяндж 6812 16 110 620 1671 9,10 10,37 

09 Вахан 4755 4755 725 725 15,25 15,25 

10 Памир 4544 4544 326 326 7,17 7,17 

11 Вахш 9808 38 823 0 3985 0,00 10,26 

12 Хингов 6577 6577 843 843 12,82 12,82 

13 Вахш 7186 22 437 384 3142 5,34 14,00 

14 Муксу 6920 6920 2177 2177 31,46 31,46 

15 Кызылсу 8330 8330 580 580 6,97 6,97 

16 Сырдарья 44 379 168 648 154 1852 0,35 1,10 

17 Сырдарья 40 302 124 269 603 1698 1,50 1,37 

18 Карадарья 23 198 23 198 78 78 0,34 0,34 

19 Нарын 58 112 60 769 707 1017 1,22 1,67 

20 Карасай 2657 2657 310 310 11,67 11,67 

21 Зеравшан 11 741 11 741 562 562 4,79 4,79 

22 Чу 26 886 26 886 358 358 1,33 1,33 

23 Каскелен 3868 3868 40 40 1,04 1,04 

24 Каракуль 4467 4467 384 384 8,59 8,59 

25 Иссык-Куль 21 934 21 934 502 502 2,29 2,29 
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Рисунок 2.2.1. Географическое положение водосборных бассейнов по номерам из таблицы 2.2.1 

 

2.2. Аспекты неопределённости моделирования 
Наши результаты относительно будущего отступления ледников подвержены значительной неопреде-

лённости. Несмотря на то, что комбинированные исследования с помощью моделирования и дистан-

ционного зондирования позволили реконструировать реакцию криосферы на изменение климата 

в масштабах региона в прошлом (например, Barandun et al., 2021; Gruber, 2012; Mankin & Diffenbaugh, 

2015, Van Tricht et al., 2021, Farinotti et al., 2015), прогнозы на будущее опираются на модели, постро-

енные на современных данных о криосфере. В отношении регионов с небольшим количеством данных 

существует целый ряд аспектов неопределённости, поэтому к интерпретации результатов следует под-

ходить с осторожностью. Доминирующим источником неопределённости при моделировании поведе-

ния криосферы являются факторы метеорологических воздействий. Будущие прогнозы изменений 

криосферы зависят от результатов прогнозирования климатических факторов, полученных с помощью 

даунскейлинга глобальных климатических моделей (ГКМ/МОЦ) (Hock et al., 2019). Пространственное 

разрешение МОЦ (100–300 км) может привести к значительным отклонениям в моделируемых климати-
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ческих данных для топографически сложных районов, где поверхностные и подповерхностные условия 

могут сильно различаться на коротких горизонтальных расстояниях (Gubler et al., 2011). В последнее 

время для Центральной Азии были разработаны некоторые региональные климатические модели, 

позволяющие получать значения региональных климатических полей с более тонким разрешением 

в несколько десятков километров (Ozturk et al., 2012; Russo et al., 2019). В отличие от задачи понимания 

крупномасштабной циркуляционной системы, оценка климатических условий регионального и местно-

го масштаба остаётся очень сложной (Zandler et al., 2019). Для моделирования местных склоновых 

процессов необходимы непрерывные климатические поля высокого разрешения (10–100 м). Таким 

образом, неопределённости остаются значительными, особенно в отношении уровней осадков. В этом 

контексте результаты реанализов атмосферных моделей с пространственным разрешением, как пра-

вило, в диапазоне 10–50 км, представляют собой важный источник данных для восполнения недостат-

ка текущей климатической информации и корректировки возможных погрешностей в будущих симу-

ляциях (например, Pereira-Cardenal et al., 2011; Maussion et al., 2014). В основном для этого требуется 

предварительный даунскейлинг для повышения репрезентативности моделей местного масштаба 

с использованием данных наземных станций. Проблема заключается в отсутствии метеорологических 

данных in situ для оценки качества и отклонений представлений климатического воздействия (Unger-

Shayesteh et al., 2013). 

В настоящее время приоритетной задачей является получение адекватных климатических временных 

рядов для моделирования климата в прошлом, настоящем и будущем. Использование инверсных ме-

тодов и косвенных параметров, таких как состояние снежного покрова (Molotch, 2010; Margulis et al., 

2015; Aalstad et al., 2018) или баланс массы ледников (Immerzeel et al., 2015), могут способствовать 

сокращению отклонений (например, поля осадков). Преимуществом методов ассимиляции данных на 

основе ансамбля является непосредственная количественная оценка неопределённостей, связанных 

с факторами воздействия, образцами и моделями (Fiddes et al., 2019). Эти направления исследований 

необходимо продвигать применительно к Центральной Азии. 

Боссон и соавт. оры (Bosson et al., 2023) рассмотрели влияние неопределённостей, обусловленных: 

1) сценариями выбросов парниковых газов; 2) прогнозами МОЦ; 3) данными о начальной площади 

ледника, толщине льда и прошлых изменениях состояния ледника; и 4) упрощениями в модели ледни-

ка и процедуре калибровки. Они выделили пять ключевых элементов, вносящих вклад в общую не-

определённость модели эволюции ледников, и повторно запустили её с учётом консервативных допу-

щений, чтобы изучить влияние этих элементов на конечные результаты. Эксперименты были направ-

лены на изучение влияния: 1) неопределённости в геодезическом балансе массы для конкретного 

ледника; 2) выбранного периода калибровки (2000–2019 гг. по сравнению с 2000–2009 гг. или 2010–

2019 гг.); 3) поправочного коэффициента осадков для каждого ледника; 4) коэффициентов таяния снега 

и льда; и 5) неопределённости в начальном объёме ледника (Farinotti et al., 2019; Milan et al., 2022). 

Отдельные факторы воздействия на будущий объём ледникового льда были объединены 

в интегрированную неопределённость с помощью суммы корней квадратов. Для оценки неопреде-

лённостей в данных моделей Боссон и соавт. оры (Bosson et al., 2023) предположили, что эти неопре-

делённости независимы для разных ледников. Однако они отметили, что неопределённости в моделях 

ледников к концу XXI века будут ограничены полной потерей небольших ледников, независимо от 

допущений модели (Bosson et al., 2023). Региональные результаты показали, что различия во внешних 

воздействиях сценариев SSP и разброс между результатами МОЦ, использующими один и тот же сце-

нарий SSP, являются доминирующими источниками неопределённости в прогнозируемой эволюции 

объёма ледников в течение столетия, что согласуется с выводами предыдущих исследований (Marzeion 

et al., 2020). Дополнительные факторы неопределённости, особенно систематические ошибки, трудно 

оценить в глобальном масштабе, и они могут потребовать дальнейшего изучения, например, даун-
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скейлинга метеорологических переменных и решения проблемы равнозначности параметров при ка-

либровке моделей (Rounce et al., 2023; Compagno et al., 2021). 

Важно признать ограничения моделей будущего баланса массы ледников, особенно тех, которые ис-

пользуют подходы, основанные на температурных индексах. Эти модели часто используют упрощён-

ные представления процессов, которые не учитывают нелинейную реакцию ледников и их механиз-

мов ответной реакции на изменение атмосферных условий. Например, при повышении температуры 

воздуха обнажение фирна в сезон абляции может увеличиться из-за полного истощения снежного 

покрова. Этот сдвиг может изменить альбедо поверхности, способность к повторному замерзанию и, 

таким образом, в определённой степени повлиять на скорость таяния. Различные балансы масс и про-

цессы, связанные с изменением состояния поверхности фирна, пока недостаточно хорошо изучены, и 

поэтому их трудно учесть в прогнозах будущих изменений (Machguth et al., 2023, Kronenberg et al., 

2022). Аналогичным образом, не учитываются пространственные и временные неоднородности аль-

бедо (Naegeli et al., 2019, Volery et al., принято к публикации). Кроме того, изменения в климатических 

режимах могут изменить чувствительность фактора баланса массы, сместить реакцию ледников от 

абляции с преобладанием сублимации к абляции с преобладанием таяния, или изменить режимы 

повторного замерзания. Возрастающая частота выпадения осадков на ледниках добавляет ещё один 

уровень сложности, поскольку тепловые эффекты этих осадков также не учитываются в таких моделях. 

Упрощение и упущение многих сложных процессов и эффектов ответной реакции может кардинально 

повлиять на реакцию ледников на изменение климата. 

Многие из этих взаимодействий не до конца изучены и не представлены в существующих моделях, что 

приводит к значительным неопределённостям в сценариях будущих изменений объёма льда и вклада 

талых вод ледников. Следовательно, результаты работы этих моделей следует интерпретировать 

с осторожностью и как тенденции, а не как точные количественные показатели изменений. Новые 

наборы данных о толщине ледника, полученные на основе многомодельных подходов и подтвер-

ждённые обширными данными локальных наблюдений (Rounce et al., 2023, Farinotti et al., 2019, Welty 

et al., 2020), позволили уменьшить неопределённость в понимании текущего состояния толщины лед-

никового покрова и, соответственно, будущего рельефа горных пород по сравнению с предыдущими 

оценками. 

Расчёт вклада талых вод ледников в различные водосборные бассейны требует тщательного изучения 

границ водосбора и маршрутизации рек, которые могут не соответствовать текущему рельефу поверх-

ности. Неточная маршрутизация может привести к значительным ошибкам в оценке вклада талых вод 

ледников для конкретных бассейнов. В качестве примера можно привести ледник Федченко, один из 

крупнейших ледников за пределами полярных регионов. Для точного прогноза поступления талых вод 

в речные системы Памира крайне важно понимать особенности будущего водосбора для талых вод. 

В настоящее время озеро Танымас, образованное ледяной плотиной ледника Танымас-5, принимает 

талые воды с ледника Федченко. Площадь озера составляет 1 км², и оно имеет пути стока в два разных 

водосбора: на восток в сторону реки Пяндж или на север в сторону реки Вахш. Такая ситуация услож-

няет отнесение объёмов льда и стока к соответствующим водосборам, особенно в прогнозах будущих 

изменений. Хотя существует вероятность того, что ледяная плотина отступит значительно раньше лед-

ника Федченко, ожидается снижение уровня как ледника, так и озера. Хотя непосредственное влияние 

на распределение объёмов льда минимально, относительная значимость объёма ледника Федченко 

в стоке будет возрастать до 2100 года, поскольку другие ледники в регионе отступают быстрее. 

Существует множество ограничений, связанных с моделированием будущих изменений, но использу-

емая здесь модель эволюции ледников — это первый шаг к прогнозированию будущей реакции лед-

ников на изменение климата и улучшению понимания грядущих изменений в криосфере и их влияния 
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на обеспеченность водными ресурсами. Вопросы, связанные с криосферой, будут становиться всё бо-

лее актуальными в контексте будущих изменений климата и потребуют лучшего понимания криосфер-

ных процессов для совершенствования моделирования с помощью долгосрочных наблюдений.  
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ГЛАВА 3. ИЗМЕНЕНИЯ КЛИМАТА И СОСТОЯНИЯ 
ЛЕДНИКОВ В ЦЕНТРАЛЬНОЙ АЗИИ В БУДУЩЕМ 

3.1. Ожидаемые изменения климата в будущем 
На рисунках 3.1.1 и 3.1.2 показаны изменения температуры воздуха и количества осадков к концу сто-

летия для трёх различных сценариев, опубликованных в работе Зигфрида и соавт. оров (Siegfried et al., 

2024). 

Казахстан. Согласно прогнозам, температура приземного воздуха в Казахстане будет продолжать расти 

во все сезоны, и к середине столетия она увеличится на 2,3–2,6 °C по сценарию SSP2-4,5 и на 3,0–3,5 °C 

по сценарию SSP5-8,5. К концу века можно ожидать потепления на 3,3–3,9 °C и 6,2–7,3 °C соответствен-

но. По сценарию самых высоких выбросов прогнозируется повышение температуры более чем на 6 °C, 

что подчёркивает необходимость контроля над глобальными выбросами для смягчения последствий 

потепления. Ожидается, что потепление будет более выраженным в северных регионах, а вероятность 

возникновения периодов сильной жары значительно возрастёт при сценарии с высоким уровнем вы-

бросов (8-е национальное сообщение Республики Казахстан по РКИК ООН, 2022). Прогнозы указывают 

на увеличение годового количества осадков в среднем на 7–8 % к середине века, к концу века — 

в диапазоне 11–14 %. Однако изменение в годовых суммах осадков по территории неравномерное: на 

западе увеличение ожидается менее чем на 10 %, а на юго-востоке — более чем на 20 %. Сезонные 

колебания показывают значительное увеличение количества осадков зимой (на 20–35%) и уменьше-

ние в летний период (в среднем на 12 %), при этом экстремальные осадки, вероятно, усилятся (8-е 

национальное сообщение Республики Казахстан по РКИК ООН, 2022). 

Кыргызстан. В среднем по Кыргызстану в 2100 году ожидается повышение температуры на 6,1 °C по 

среднему сценарию (SSP2-4.5) и на 4,7 °C по мягкому сценарию (SSP1-2.6). При пессимистичном сцена-

рии (SSP5-8.5) волны жары и другие экстремальные климатические явления будут представлять серь-

ёзную угрозу для экосистемы и значительно ухудшат условия жизни в затронутых районах (Абдырасу-

ова и соавт., 2011). По оценкам, при повышении глобальной температуры на 2 °C волны тепла будут 

усиливаться, и 20–30 % летних периодов будут значительно теплее, а при повышении глобальной тем-

пературы на 4 °C 50–80 % летних периодов будут значительно жарче в последней четверти XXI века 

(Reyer et al., 2015). По прогнозам на будущее, осадки в центральной и, особенно, восточной части Кыр-

гызстана могут стать более интенсивными (Reyer et al., 2015). Изменения в количестве осадков 

в мультимодельном прогоне гораздо более выражены зимой (декабрь — февраль), чем летом 

(июнь — август) (Reyer et al., 2015). Анализ данных о количестве осадков по всей стране свидетельству-

ет о том, что количество осадков увеличивается весной, а не зимой, хотя это увеличение незначитель-

но (Третье национальное сообщение Кыргызской Республики по РКИК ООН, 2016). Помимо изменений 

в количестве осадков, Кыргызстан, вероятно, будет испытывать повышенную засушливость в более 

низких районах из-за увеличения испарения в результате повышения температуры. 

Таджикистан. По прогнозам, к 2050 году среднегодовая температура увеличится на 2 °C, особенно 

в период с декабря по август (Всемирный банк, Портал знаний об изменении климата). Анализ данных 

за последние 60 лет показывает, что температура воздуха постоянно повышается со средней скоростью 

0,2–0,25 °C в декаду, особенно в западной части Таджикистана, в то время как в восточной части стра-

ны повышение температуры воздуха менее выражено. В период 2011–2041 гг. не выявлено суще-

ственных различий в тенденциях потепления между разными сценариями выбросов. Однако, начиная 

с середины столетия (2041–2070 гг.), будет наблюдаться заметное повышение температуры в диапазоне 

+1,1...+2,8 °C по сценарию RCP8.5, а к концу столетия (2071–2099 гг.) прогнозируется значительное по-

вышение температуры в диапазоне +4,8...+6,6 °C (Aalto et al., 2017). Изменения количества осадков не 
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столь очевидны, поскольку модели дают противоречивые прогнозы. В среднем ожидается уменьше-

ние количества осадков в западной части страны, а в горной восточной части возможно небольшое их 

увеличение, хотя эти изменения незначительны из-за и без того низких годовых сумм осадков (менее 

100 мм в год) (Aalto et al., 2017). Ожидается, что потепление климата повлечёт за собой раннее таяние 

снега в весенние месяцы, что приведёт к частым наводнениям (Xenarios et al., 2019). 

Туркменистан. Анализ тенденций изменения климата в Туркменистане характеризуется простран-

ственной изменчивостью и сложностями в интерпретации данных. Исследования показывают, что пу-

стыни Центральной Азии могут стать менее засушливыми в результате глобального потепления, что 

потенциально может привести к смещению на юг и усилению западных циклонов, подобно условиям 

раннего голоцена (Lioubimtseva & Cole, 2006). Климатические модели предсказывают повышение тем-

пературы на 1–2 °C к 2030–2050 годам, при этом прогнозные уровни осадков варьируются и демон-

стрируют значительную неопределённость (Lioubimtseva & Cole, 2006). Моделирование сценария 

REMO-0406 показывает тенденцию значительного повышения температуры с 2016 по 2055 год на 

0,51 °C в декаду, при этом ожидается сокращение снежного покрова и увеличение испарения вдоль 

Каракумского канала, что приведёт к значительному сокращению доступных водных ресурсов 

в Туркменистане (Дуан и соавт., 2019). Климатические данные, полученные в районе Аральского моря 

с 1960-х годов, свидетельствуют о сдвиге в сторону более континентального климата, характеризующе-

гося повышением летних температур, понижением зимних температур, уменьшением влажности и 

изменением характера осадков (Middleton, 2002). Сокращение площади поверхности Аральского моря 

связывают с уменьшением количества осадков и солевой пылью, влияющими на быстрые изменения 

климата и растительного покрова (Glazovsky, 1995). Хотя предполагается вероятное повышение темпе-

ратуры воздуха в Центральной Азии, индекс засушливости не показывает устойчивых тенденций для 

всего региона (IPCC, 2001). Данные дистанционного зондирования свидетельствуют об уменьшении 

засушливости в северной части региона и смещении зоны пустынь на юг (Золотокрылин, 2003), что 

подтверждается данными Харина и соавт. оров (Харин и соавт., 1998), которые указывают на возмож-

ное уменьшение засушливости в этом регионе в течение последних десятилетий. 

Узбекистан. Прогнозы будущего изменения климата Узбекистана в основном сосредоточены на харак-

теристиках температуры приземного воздуха и осадков. Радченко и соавт. оры (Радченко и соавт., 

2017) спрогнозировали изменения стока в бассейне Сырдарьи, получив повышение температуры воз-

духа (с 3,7 °C до 3,9 °C) и увеличение количества осадков (с 11 % до 13 %). Во многих исследованиях 

(Sorg et al., 2012a, 2014, 2015; Kure et al., 2013; Barandun et al., 2020) были оценены негативные послед-

ствия глобального потепления для ледников Центральной Азии, включая Узбекистан, причём у Зорг и 

соавт. оров (Sorg et al., 2014) спрогнозировано существенное сокращение ледников из-за повышения 

температуры воздуха над горами Тянь-Шаня, которые имеют жизненно важное значение для водо-

снабжения региона. Негативные последствия изменения климата для сельского хозяйства и производ-

ства продовольствия в Центральной Азии были рассмотрены в работах Зоммера и соавт. оров (Sommer 

et al., 2013) и Бободжонова и Ав-Хассана (Bobojonov and Aw-Hassan, 2014). Наконец, в обзоре Ксена-

риоса и соавт. оров (Xenarios et al., 2019) обобщаются существующие литературные данные 

о последствиях антропогенного изменения климата и мерах по адаптации к нему в регионе. 
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Рисунок 3.1.1. Изменение температуры воздуха в Центральной Азии по трём сценариям выбросов 

к 2100 г. по данным Зигфрида и соавт. оров (Siegfried et al., 2024) 

 

Рисунок 3.1.2. Изменение количества осадков в Центральной по трём сценариям выбросов к 2100 г. 

по данным Зигфрида и соавторов. (Siegfried et al., 2024) 

 

3.2. Ожидаемые изменения объёма ледников в будущем 
Ожидается, что до конца XXI века ледники Тянь-Шаня и Памира сохранят текущую, ускоряющуюся тен-

денцию потери массы (Rounce et al., 2023). Наши результаты моделирования показывают, что к 2100 

году общая потеря объёма льда составит от 58 % (сценарий с низким уровнем выбросов) до 85 % (сце-

нарий с высоким уровнем выбросов) от общего объёма ледников по состоянию на 2020 год (рис. 3.2.1). 

Так, для сценария с высоким уровнем выбросов это означает, что из нынешней массы льда в 860 км³ 

останется только 140 км3. 

  

Рисунок 3.2.1. Моделируемое изменение объёма льда в регионе 13 Рэндольфского кадастра ледников 

за период с 2000 по 2100 год. Чёрная линия показывает среднее значение по всем 13 МОЦ (цветные 

линии) для трёх различных сценариев. Все сценарии показывают сильную потерю объёма льда. 

Потеря объёма ледников будет ускоряться до середины столетия, а затем несколько замедлится (рис. 

3.2.2). Для Тянь-Шаня (бассейн Сырдарьи) потеря объёма льда будет наибольшей до 2040 года, после 

чего она замедлится. Это связано не с уменьшением атмосферного потепления, а скорее со значитель-

ным сокращением объёма льда, в результате чего остаётся меньше льда для таяния. Для большинства 

бассейнов Памира (бассейн Амударьи) относительная потеря объёма льда более стабильна и незначи-

тельно уменьшается до конца столетия (рис. 3.2.2). 
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Рисунок 3.2.2. Потери объёма льда в масштабах всего водосбора для промежуточного сценария (SSP2-

4.5). Синий цвет на круговых диаграммах указывает на изменение объёма к 2040, 2060, 2080 и 2100 

годам (от самого светлого к самому тёмному соответственно) по отношению к объёму льда в 2020 году 

(число под круговой диаграммой, в км3). 

Потери массы ледников в Центральной Азии неоднородны в пространственном отношении (рис. 3.1.2 

и табл. 3.1.1). Прогнозируется, что самые маленькие и низко расположенные ледники исчезнут задолго 

до 2100 года, даже в сценариях с низким уровнем выбросов, в то время как самые большие и высоко 

расположенные ледники сохранятся до XXII века, даже при более пессимистичных прогнозах, хотя и 

с потерей объёма более чем на 50 %. Таким образом, западные окраины Тянь-Шаня и Памира к концу 

столетия в большей степени пострадают от потери объёма льда, чем, например, межгорные области 

Тянь-Шаня и Памира. Внешние орографические окраины Тянь-Шаня и Памира — это районы, которые 

в настоящее время получают большую долю осадков из-за эффекта экранирования западного струйно-

го течения рельефом. Однако ледники в этом районе расположены на меньшей высоте и, соответ-

ственно, при более высоких среднегодовых температурах воздуха. Таким образом, тенденции повы-

шения температуры воздуха будут оказывать более сильное влияние на скорость отступления ледни-

ков в этом районе. 
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Резкий контраст в прогнозируемой потере объёма льда наблюдается между водосборами 

в центральноазиатской части Тянь-Шаня и на Памире (рис. 3.2.3). Это очевидно при всех сценариях. 

В бассейне Амударьи и на Каракульском водосборе ледники сохранятся до конца века, особенно на 

центральном Памире, где ледник Федченко содержит большую часть объёма льда. Для центральноази-

атской части Тянь-Шаня прогнозируется отступление льда на 70 % при наиболее благоприятных сцена-

риях, а при сценарии высоких выбросов ледники в этом районе исчезнут полностью (рис. 3.2.2 и S5 для 

других сценариев). В этом сценарии оледенение сильно сократится по всему региону и сохранится 

только на очень больших высотах. 

 

Рисунок 3.2.3. Потеря объёма ледников в масштабах всего водосбора. На круговых диаграммах черным 

цветом показан общий объём льда, который останется к 2100 году, а белым — общий объём льда, 

который будет утрачен. Число под круговой диаграммой указывает объём льда на 2020 год в км.3 

 

Таблица 3.2.1 — Относительное изменение объёма льда по отношению к объёму льда на 2020 год для 

всех трёх сценариев выбросов 

Оптимистичный (SSP1-2.6) 
год 2020 2040 2060 2080 2100 

Водосбор км3  %   

Амударья 681 87 73 60 52 

Кафирниган 3 70 53 36 26 

Пяндж 308 86 70 52 45 

Ванчоб 22 87 77 66 60 

Бартанг 98 89 75 60 53 

Гунт 30 78 54 35 27 

Вахан 46 88 70 60 49 

Памир 19 83 62 49 38 

Вахш 366 88 76 64 57 

Хингов 63 89 73 61 55 

Муксу 250 90 80 70 62 

Кызылсу 33 82 63 47 37 

Сырдарья 88 66 42 24 19 

Карадарья 2 54 30 18 13 

Нарын 51 63 38 20 12 

Карасай 23 68 42 23 12 

Зеравшан 36 82 63 52 44 

Чу 14 49 23 13 10 

Каскелен 1 44 14 8 6 

Каракуль 24 84 68 50 43  

Иссык-Куль 20 50 25 13 11 
 

Промежуточный (SSP2-4.5) 
год 2020 2040 2060 2080 2100 

Водосбор км3  %   

Амударья 681 87 69 51 36 

Кафирниган 3 78 51 23 10 

Пяндж 308 86 69 50 35 

Ванчоб 22 92 77 60 47 

Бартанг 98 89 74 55 41 

Гунт 30 79 55 34 18 

Вахан 46 88 73 52 33 

Памир 19 85 65 42 27 

Вахш 366 88 72 56 41 

Хингов 63 87 72 54 40 

Муксу 250 90 78 63 48 

Кызылсу 33 84 63 40 26 

Сырдарья 88 70 37 17 7 

Карадарья 2 57 25 8 3 

Нарын 51 65 31 11 3 

Карасай 23 69 35 12 3 

Зеравшан 36 83 60 40 25 

Чу 14 53 19 6 2 

Каскелен 1 42 10 4 1 

Каракуль 24 84 64 43 27 

Иссык-Куль 20 53 20 7 3 
 

Пессимистичный (SSP5-8.5) 
год 2020 2040 2060 2080 2100 

Водосбор км3  %   

Амударья 681 85 60 37 21 

Кафирниган 3 71 27 6 0 

Пяндж 308 83 54 31 14 

Ванчоб 22 89 67 44 24 

Бартанг 98 86 61 39 20 

Гунт 30 74 40 14 2 

Вахан 46 84 57 32 9 

Памир 19 80 51 28 8 

Вахш 366 87 66 43 26 

Хингов 63 83 61 36 16 

Муксу 250 89 71 50 33 

Кызылсу 33 80 49 22 8 

Сырдарья 88 62 27 5 1 

Карадарья 2 48 16 2 0 

Нарын 51 56 23 3 0 

Карасай 23 60 26 3 0 

Зеравшан 36 81 50 24 6 

Чу 14 44 12 1 0 

Каскелен 1 35 5 1 0 

Каракуль 24 81 52 25 7 

Иссык-Куль 20 44 12 2 0 
 

  

Оптимистичный (SSP1-2.6) Промежуточный (SSP2-4.5) Пессимистичный (SSP5-8.5) 
Остаток объёма льда к 2100 году [%] Остаток объёма льда к 2100 году [%]  Остаток объёма льда к 2100 году [%] 
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ГЛАВА 4. ИЗМЕНЕНИЯ ВКЛАДА ТАЛЫХ ВОД ЛЕДНИКОВ 
В ЦЕНТРАЛЬНОЙ АЗИИ В БУДУЩЕМ 

4.1. Годовой вклад талых вод 
Ожидается, что прогнозируемые изменения в состоянии ледников существенно повлияют на гидроло-

гический режим горных водосборов. По мере того как ледники будут терять объём льда, высвобожде-

ние талой воды будет увеличиваться, поначалу ускоренными темпами, пока не будет достигнут «пик 

водности» (Huss & Hock, 2018). После этого вклад таяния ледников начнёт снижаться из-за уменьшения 

их размеров, а доминирующими источниками стока станут таяние снега и, в некоторых случаях, дож-

девые осадки (Kaser et al., 2010). Этот сдвиг приведёт к изменению как аккумулирующей способности, 

так и характера стока в затронутых районах, что будет иметь важные последствия для задач управле-

ния водными ресурсами. Сроки наступления пикового вклада талых вод ледников зависят от темпов 

потепления (Rounce et al., 2023), но также в значительной степени от текущего объёма льда, как 

в абсолютном выражении, так и по отношению к размеру водосбора. Ожидается, что крупнейшие лед-

никовые комплексы на Памире не достигнут пикового стока до 2100 года, в то время как меньшие, 

характеризующиеся меньшей степенью оледенения водосборные бассейны, возможно, уже прошли 

свой максимум стока. Как показано на рис. 4.1.1 и рис. S1, ни один из смоделированных водосборов 

ещё не достиг пика ледникового стока. Однако несколько водосборов в бассейне Сырдарьи скоро до-

стигнут своего пикового стока талых вод. Например, Каскелен, Чу и Иссык-Куль скоро достигнут пика 

стока талых вод, а у рек Карадарья, Нарын и Карасу, как ожидается, это произойдёт в течение следую-

щего десятилетия. По прогнозам, другие водосборы бассейна Сырдарьи достигнут пика стока 

к середине столетия. После этого поступление талых ледниковых вод в крупные реки бассейна Сырда-

рьи начнёт сокращаться (рис. 4.1.1). В сравнении с этим ожидается, что бассейн Амударьи и связанные 

с ним водосборные бассейны достигнут пика стока позже. Некоторые из них, такие как Ванчоб и Муксу, 

могут достичь максимума поступления талых вод только к концу XXI века, при этом вклад талых вод, 

возможно, продолжит увеличиваться и в XXII веке. Кроме того, если в суббассейнах Сырдарьи ожида-

ется более резкое снижение годового вклада талых вод после пика стока, то в бассейне Амударьи 

снижение может быть более постепенным. В результате изменения речного стока, вероятно, будут 

более выраженными на Сырдарье, а в бассейне Амударьи ожидаются более постепенные сдвиги. 

   
Рисунок 4.1.1. Годовой вклад талых вод ледников в общий речной сток Сырдарьи и Амударьи 

Резкий контраст в изменении объёма льда между бассейнами Тянь-Шаня и Памира отражается 

в вкладе талых вод ледников в их суббассейнах (рис. 4.1.1 и табл. 4.1.2). Прогнозируемый среднегодовой 

сток включает только вклад ледников в общий сток водосбора (см. раздел 2.2). Ожидается, что к концу 

столетия Сырдарья, а также Иссык-Куль, Каскелен и Чу будут испытывать значительное сокращение 

Водосбор: Сырдарья в районе Шардаринского водохранилища 

Год 

С
р
е

д
н

е
го

д
о
в
о

й
 р

а
с
х
о

д
 в

о
д

ы
 [

м
3
/с

е
к.

] 

Год 

Водосбор: Амударья ниже притока Кафирниган  

С
р
е

д
н

е
го

д
о
в
о

й
 р

а
с
х
о

д
 в

о
д

ы
 [

м
3
/с

е
к.

] 

Сценарий 

▬ SSP1-2.6 

▬ SSP2-4.5 

▬ SSP5-8.5 



28 | с т р .  
 

годового притока талых ледниковых вод. Например, наиболее сильно затронутые изменениями водо-

сборные бассейны Чу, Каскелен и Иссык-Куль могут столкнуться с сокращением притока талых вод до 

25 %. Это снижение обусловлено не атмосферным потеплением, а тем, что объём льда в этих водо-

сборных бассейнах будет истощён настолько, что текущий уровень продуцирования талых вод будет не 

возможен. Напротив, в бассейне Амударьи, а также в Каракульском и Зеравшанском водосборах про-

гнозируется увеличение вклада талых вод. При сценарии с низким уровнем выбросов это увеличение 

может составить до 16 %, а при сценарии с высоким уровнем выбросов в бассейнах с высоким уровнем 

оледенения, таких как водосборный бассейн Муксу, поступление талой воды может увеличиться на 

80 %. Водосборный бассейн Муксу, на котором расположен ледник Федченко, особенно важен для 

будущей водообеспеченности, так как изменения режима талых вод в масштабах всего бассейна 

в значительной степени определяются поведением этого ледника. В суббассейнах Амударьи вклад 

талых вод может вырасти на 35–70 %, что приведёт к увеличению годового расхода талых вод ледника 

в 1,8 раза по сравнению с 1991–2020 годами. Такое значительное увеличение притока талых вод может 

иметь серьёзные последствия для водообеспеченности, потенциально грозя наводнениями и затопле-

ниями, а также влияя на производство гидроэлектроэнергии. 

 

Рисунок 4.1.2. Относительное изменение (от настоящего времени до 2100 года) вклада талых вод ледни-

ков в общегодовой речной сток в разбивке по водосборным бассейнам для трёх сценариев выбросов 

  

Оптимистичный (SSP1-2.6) Промежуточный (SSP2-4.5) Пессимистичный (SSP5-8.5) 
Изменение годового расхода [%] к 2071–
2100 гг. 

Изменение годового расхода [%] к 2071–2100 гг. Изменение годового расхода [%] к 2071–2100 гг. 
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Таблица 4.1.1 — Изменения годового вклада талых вод ледников в общий речной сток для каждого 

моделируемого водосбора для различных будущих периодов времени 

Оптимистичный (SSP1-2.6) 
Водосбор Расход 

в 1991–
2020 гг. 

Изменение 
расхода 
в 2001–
2030 гг. 

Изменение 
расхода 
в 2031–
2060 гг. 

Изменение 
расхода 
в 2071–
2100 гг. 

  м3/. сек  

Амударья 315 29 74 29 

Бартанг 41 4 11 4 

Чу 26 1 -1 -5 

Гунт 19 2 5 0 

Иссык-Куль 30 2 0 -7 

Карадарья 4 0 0 0 

Каракуль 8 1 4 2 

Карасу 14 1 4 -2 

Каскелен 3 0 0 -1 

Хингов 47 4 10 4 

Кафирниган 7 0 1 0 

Кызылсу 20 2 6 2 

Муксу 79 8 24 13 

Нарын 45 5 8 -5 

Памир 8 1 2 0 

Пяндж 134 13 30 8 

Сырдарья 99 9 12 -10 

Вахш 173 16 44 20 

Ванчоб 17 1 3 15 

Вахан 5 0 1 1 

Зеравшан 37 3 5 0 
 

Промежуточный (SSP2-4.5) 
Водосбор Расход 

в 1991–
2020 гг. 

Изменение 
расхода 
в 2001–
2030 гг. 

Изменение 
расхода 
в 2031–
2060 гг. 

Изменение 
расхода 
в 2071–
2100 гг. 

  м3/. сек  

Амударья 314 23 94 72 

Бартанг 41 3 15 11 

Чу 26 1 0 -5 

Гунт 18 2 6 2 

Иссык-Куль 30 2 1 -6 

Карадарья 4 0  0 

Каракуль 8 1 5 4 

Карасу 14 1 5 -1 

Каскелен 3 0 0 -1 

Хингов 47 3 13 11 

Кафирниган 7 0 1 0 

Кызылсу 20 2 8 5 

Муксу 79 6 27 28 

Нарын 45  10 -4 

Памир 8 1 3 1 

Пяндж 134 10 41 26 

Сырдарья 99 7 18 -7 

Вахш 173 13 52 46 

Ванчоб 17 1 4 4 

Вахан 5 0 1 0 

Зеравшан 37 2 7 4 
 

Пессимистичный (SSP5-8.5) 
Водосбор Расход 

в 1991–
2020 гг. 

Изменение 
расхода 
в 2001–
2030 гг. 

Изменение 
расхода 
в 2031–
2060 гг. 

Изменение 
расхода 
в 2071–
2100 гг. 

  м3/. сек  

Амударья 316 28 146 136 

Бартанг 41 4 23 22 

Чу 26 1 1 -6 

Гунт 18 2 9 4 

Иссык-Куль 30 2 2 -6 

Карадарья 4 0 1 0 

Каракуль 8 1 8 5 

Карасу 14 1 7 -3 

Каскелен 3 0 0 -1 

Хингов 47 3 18 18 

Кафирниган 7 0 1 0 

Кызылсу 21 2 11 6 

Муксу 79  45 64 

Нарын 45 4 14 -7 

Памир 8 14  3 

Пяндж 134 13 61 48 

Сырдарья 100 9 26 -12 

Вахш 174 14 82 89 

Ванчоб 17 1 8 7 

Вахан 5 0 2 0 

Зеравшан 37 3 11 5 
 

 

4.2. Сезонные изменения вклада талых вод 
Вклад талых ледниковых вод играет важную роль в регулировании динамики речного стока, влияя как 

на сроки, так и на объёмы расходов рек (рис. 4.2.1). В сезон таяния этот вклад может увеличиваться до 

70–90 % для бассейна Амударьи и до 20–40 % для бассейна Сырдарьи от среднегодового поступления 

воды (Saks et al., 2022; Armstrong et al., 2019, Huss and Hock, 2018). Таяние ледников обеспечивает 

надёжное водоснабжение сельского хозяйства, промышленности и экосистем, особенно после исто-

щения сезонного снежного покрова. Поэтому понимание сезонного распределения поступления воды 

в результате таяния ледников, не менее важно, чем изучение вклада годового стока. 

   
Рисунок 4.2.1. Распределение месячного стока для различных компонентов водных ресурсов, по 

материалам Армстронга и соавт. оров (Armstrong et al., 2019), для Сырдарьи и Амударьи (слева). 
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Сезонные изменения вклада талых вод ледников для водосборов Сырдарьи и Амударьи на 2100 год 

(справа) 

В Центральной Азии сезон таяния обычно начинается в середине — конце апреля и длится до начала 

октября (рис. 4.2.1 и рис. S2), при этом в начале сезона основной вклад в сток вносит таяние снега на 

ледниках, а таяние льда начинается только тогда, когда на леднике начинает подниматься снеговая 

линия, обычно в конце июня — начале июля. Сезон таяния немного короче в самых высоких водосбо-

рах Памирских гор, где таяние обычно начинается в мае (рис. S2). Для большинства бассейнов пик вы-

свобождения талых вод ледников приходится на август, за исключением бассейнов Сырдарьи, Карада-

рьи, Каскелена, Зеравашана и Чу, где приток талых вод в июле и августе одинаков, и бассейна Кафир-

ниган, где выраженный пик приходится на июль (рис. S2). Время этого пика притока талой воды будет 

сильно зависеть от будущих изменений в протяжённости льда, поскольку эти изменения не будут про-

исходить равномерно в течение года. 

В бассейне Амударьи вклад талых вод будет увеличиваться весной и в начале лета, а в бассейне Сыр-

дарьи прогнозируется снижение вклада талых вод в конце лета, сопровождающееся общим снижением 

сезонного пикового расхода (рис. 4.2.1). По прогнозам, в обоих бассейнах сезон таяния начнётся рань-

ше — уже в конце марта по всем сценариям выбросов. Это приведёт к быстрому увеличению скорости 

таяния, в результате чего весной в две основные реки Центральной Азии будет поступать большой из-

быток воды. 

Хотя потепление атмосферного воздуха приведёт к более раннему началу сезона таяния 

в большинстве бассейнов, бассейны Гунт, Пяндж, Вахан и Памир (описание бассейнов приведено 

в таблице 2.1.1) являются исключениями (рис. 4.2.1, 4.2.2, 4.2.3, 4.2.4 и S2). Более раннее начало весен-

ней абляции сопровождается большим увеличением сброса талых вод, в результате чего реки получа-

ют больший объём талых вод за более короткий период времени (рис. S2). Такое ускоренное весеннее 

и раннее летнее таяние приведёт к смещению пикового вклада талых вод ледников с августа на более 

равномерно распределённый июльско-августовский пик или даже июльский максимум, особенно при 

сценариях с высоким и средним уровнем выбросов. Ожидается, что только в нескольких бассейнах, 

таких как Вахш, Муксу и Каракуль, пик вклада талой воды будет приходиться на август (рис. 4.2.3). 

Напротив, в таких бассейнах, как Кафирниган, Чу и Каскелен, пик вклада талых вод сместится уже на 

июнь (рис. 4.2.2). 

 
Рисунок 4.2.2. Сезонные изменения вклада талых вод ледников на водосборе Вахш, Муксу, и Каракуль 

на 2100 год 
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Рисунок 4.2.3. Сезонные изменения вклада талых вод ледников на водосборе Чу, Каскелен и Иссык-

Куль на 2100 год 

Многолетние наблюдения за стоком свидетельствуют о происходящих изменениях на водосборе На-

рына. Сток в летние месяцы увеличился с 1940 по 2000 год в связи с ускоренным таянием в условиях 

потепления климата (рис. 4.2.4). Хотя пик стока в этот период приходился на июль, сдвиг за последние 

20 лет в сторону более раннего максимума стока указывает на то, что пик водности для этого водосбо-

ра будет достигнут очень скоро и летний сток будет уменьшаться в течение следующих нескольких 

десятилетий (рис. S1). К концу столетия пик вклада талых вод будет приходиться на период до наступ-

ления жаркого и сухого летнего периода, и значительная часть летнего вклада талых вод будет утраче-

на. При экстремальном сценарии выбросов этот показатель может составить менее 50 % от текущего 

стока (рис. 4.2.4). 

   

Рис. 4.2.4. Исторические изменения сезонного стока (слева) (Saks et al., 2022) и прогнозируемые изме-

нения к 2100 году для водосбора Нарын по трём сценариям выбросов (справа) 

В то время как в большинстве памирских водосборов (таких как Амударья, Пяндж, Ванчоб, Бартанг, 

Гунт, Хингов, Вахш, Муксу и Каракуль) вклад талых вод в первые летние месяцы будет расти, 

в водосборах Тянь-Шаня произойдёт значительное сокращение величины пиков и летнего вклада та-

лых вод. Эти сокращения окажут значительное влияние на общий речной сток, поскольку ледники 

Тянь-Шаня обеспечивают около 42 % поступления пресной воды в Сырдарью (Huss and Hock, 2018). 

Наиболее сильное сокращение стока летом прогнозируется для бассейнов Чу, Каскелен, Иссык-Куль, 

Нарын и Карасу, где расположены одни из самых густонаселённых районов региона (рис. 4.2.3). На 

Памире к 2100 году ожидается снижение вклада летних талых вод в бассейнах Кафирниган, Гунт, Кы-

зылсу и Вахан, причём два последних являются единственными бассейнами Памира, в которых про-

гнозируется снижение вклада талых вод по сравнению с текущим уровнем к концу столетия. В Вахше и 

Муксу, напротив, прогнозируется увеличение вклада талых вод во все месяцы по всем сценариям, 

а в Каракуле прогнозируется значительное увеличение с июня по август (рис. 4.2.4). 

Водосбор: Чу 

Месяц 

С
р

е
д

н
е

м
е

с
я

ч
н

ы
й

 р
а
с
х
о
д

 в
о

д
ы

 [
м

3
/с

е
к.

] 

Водосбор: Каскелен 

Месяц 

С
р

е
д

н
е

м
е

с
я

ч
н

ы
й

 р
а
с
х
о
д

 в
о

д
ы

 [
м

3
/с

е
к.

] 

Водосбор: Иссык-Куль 
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Наиболее значительные изменения вклада талых вод ожидаются в мае и августе (рис. 4.2.5, S3, S4). 

В мае почти на всех водосборах наблюдается увеличение вклада талых вод по всем сценариям, что 

свидетельствует о затянувшемся сезоне таяния. Этот сдвиг обусловлен более высокими температура-

ми воздуха на больших высотах, что приводит к более раннему таянию снега, льда и фирна, при этом 

высвобождение талой воды может в два-три раза превышать текущие уровни. Снеготаяние и таяние 

ледников будут усиливаться ранней весной и, следовательно, будут быстрее наполнять реки, что при-

ведёт к сокращению сезонной и многолетней ёмкости водохранилищ. В более крупных бассейнах, 

таких как Сырдарья и Амударья (рис. 4.2.1), вклад ранневесеннего таяния ледников относительно не-

велик по сравнению со снеготаянием, которое остаётся наиболее важным источником воды на весну. 

В этих бассейнах значение дождевых осадков будет возрастать и частично компенсировать изменение 

притока от талых снеговых и ледниковых вод в годовом масштабе в условиях более тёплого климата. 

Однако совокупный эффект от увеличения объёмов и более раннего таяния ледников и увеличения 

количества осадков может перегрузить речные системы и повысить вероятность весенних паводков и 

селей. 

Напротив, прогнозируется резкое сокращение притока талых вод в августе для водосборных бассейнов 

Тянь-Шаня, причём при промежуточных сценариях сокращение составит 60–80 %, а при сценариях 

высоких выбросов — почти полная потеря стока талых вод для многих водосборных бассейнов Тянь-

Шаня, в результате чего в конце лета в регионе будет засушливо (рис. 4.2.5) Хотя водосборные бассей-

ны на Памире могут не испытать существенного сокращения пикового стока, сдвиг в сторону более 

раннего поступления талых вод приведёт к тому, что в таких речных бассейнах, как Зеравшан, Кызылсу, 

Гунт, Пяндж, Вахан, Памир и Кафирниган, в августе станет суше при оптимистичном сценарии, 

а аналогичное сокращение водности в других бассейнах, таких как Пяндж, Ванчоб и Хингов, произой-

дёт при сценариях более высоких выбросов (рис. 4.2.5). 
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Рисунок 4.2.5. Изменение расхода талой воды ледников для каждого водосбора к концу столетия по 

трём сценариям выбросов для мая (вверху) и августа (внизу) 

  

Оптимистичный (SSP1-2.6) Промежуточный (SSP2-4.5) Пессимистичный (SSP5-8.5) 
Изменение расхода [%] к 2071–2100 гг.: май Изменение расхода [%] к 2071–2100 гг.: май Изменение расхода [%] к 2071–2100 гг.: май 

Изменение расхода [%] к 2071–2100 гг.: август Изменение расхода [%] к 2071–2100 гг.: август Изменение расхода [%] к 2071–2100 гг.: август 
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ГЛАВА 5. ОБСУЖДЕНИЕ 

5.1. Изменения вклада в сток 
Прогнозы гидрологической модели в работе Зигфрида и соавт. оров (Siegfried et al., 2024) для Цен-

тральной Азии указывают на увеличение фактического испарения от 7 % до 17 % и изменение стока от 

+1 % до −3 % для сценариев SSP1-2.6 и SSP5-8.5 соответственно. При наиболее экстремальном клима-

тическом сценарии (SSP5-8.5) ожидается увеличение стока на 3,8 % и 5,0 % в первый и второй будущие 

периоды, а затем снижение на −2,7 % в третий период. Прогнозируемое увеличение и уменьшение 

стока водосборных бассейнов во времени согласуется с прогнозируемым увеличением вклада талых 

вод ледников. Зигфрид и соавт. оры (Siegfried et al., 2024) подчёркивают разнообразие гидрологиче-

ских реакций на изменение климата в высокогорьях Центральной Азии. Различные гидрологические 

механизмы в суббассейнах и на разных высотных поясах приводят к географически различным клима-

тическим последствиям в XXI веке. Авторы подчёркивают важность вклада талых вод ледников, что 

согласуется с нашими результатами (рис. 5.1.1). 

Зигфрид и соавт. оры (Siegfried et al., 2024) делают вывод, что по мере ускорения абляции ледников и 

потери ледникового льда в течение XXI века на Тянь-Шане будет происходить высыхание зоны форми-

рования стока (рис. 5.1.1 и рис. 5.1.2). Для рек, берущих начало в горах Памира, в течение XXI века бу-

дет наблюдаться увеличение стока, частично из-за усиления таяния ледников и того факта, что пик 

стока там наступает позже, а также, возможно, в некоторой степени из-за прогнозируемого увеличения 

количества осадков (рис. 3.1.2). 

Во всех районах значительного оледенения повышенная абляция ледников стабилизирует общий реч-

ной сток до наступления пика таяния ледников (Siegfried et al., 2024). Авторы также подчёркивают важ-

ность времени наступления пика водности для стабилизации речного стока и не ожидают значительно-

го изменения водности в бассейне Сырдарьи, несмотря на значительное сокращение вклада талых 

ледниковых вод в бассейн. Это контрастирует с бассейнами Чу и Иссык-Куля, где общий речной сток 

уменьшится. В регионе также ожидается увеличение изменчивости стока. Увеличение частоты высоких 

расходов также вызывает опасения по поводу риска наводнений, что требует разработки более надёж-

ных стратегий по снижению последствий наводнений. Аналогичным образом, Барандун и соавт. оры 

(Barandun et al., 2021) обнаружили повышенную изменчивость годового баланса массы ледников, что 

указывает на риск экстремально высоких или низких вкладов талых вод ледников. Это может создать 

проблемы для управления водными ресурсами, поскольку инфраструктура и сельскохозяйственная 

деятельность могут нуждаться в помощи для адаптации к более нестабильной водообеспеченности и 

экстремальным объёмам воды. Одним из самых больших рисков являются высокие весенние темпера-

туры, которые могут привести к усиленному таянию снега и ледников в сочетании с большим количе-

ством осадков, и которые могут стать более частыми в будущем. 
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Рисунок 5.1.1. Годовой вклад талых вод ледников в общий речной сток, представленный в работе 

Зигфрида и соавторов. (Siegfried et al., 2024) и в нашем исследовании к 2100 году для сценариев 

с наиболее высоким уровнем выбросов (SSP5-8.5) 

 

Рисунок 5.1.2. Прогнозируемое изменение общего речного стока, представленное в работе Зигфрида и 

соавт. оров (Siegfried et al., 2024) до 2100 года для сценария с наиболее высоким уровнем выбросов 

(SSP5-8.5). Показатели стока основаны на моделировании всего водного баланса и включают вклад 

дождевых осадков, снега, грунтовых вод и таяния ледников, а также испарение. 

 

5.2. Изменение структуры водных ресурсов в условиях 
изменения климата 
В Центральной Азии забор воды тесно связан с её наличием (Шестой оценочный доклад Межправи-

тельственной группы экспертов по изменению климата). Туркменистан и Узбекистан являются наиболее 

остро испытывающими нехватку воды странами региона (Karthe et al., 2017; Russell, 2018; FAO-

AQUASTAT, 2021), при этом 88 % поверхностных вод Туркменистана поступает из Амударьи, протекаю-
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щей по его границе из Таджикистана и через Афганистан (Определяемый на национальном уровне 

вклад Туркменистана в рамках Парижского соглашения, 2022; Дуан и соавт., 2019). Кумулятивные по-

следствия изменения климата будут глубокими и усугубят нагрузку на управление водными ресурса-

ми. Климат Центральной Азии резко континентальный. На юге и востоке горные хребты Гималаев, 

Памира, Гиндукуша и Тянь-Шаня почти полностью изолируют Центральную Азию от влажных воздуш-

ных масс с Индийского океана. Из-за этого барьерного эффекта на значительной части Тянь-Шаня и 

Памира преобладают сухие и холодные условия. На Тянь-Шане в период 1960–2007 гг. было зафикси-

ровано устойчивое повышение температуры воздуха примерно на 0,1–0,2 °C за десятилетие, причём 

потепление было более выраженным в зимние месяцы. На Памире за тот же период температура по-

вышалась на 0,07–0,11 °C в год (Barandun et al., 2020). 

Ожидается, что потепление в Центральной Азии превысит среднемировые показатели, и к 2100 году 

температура повысится в среднем на 5–6 °C (Sara J. & Proskuryakova T., 2022). Льды и таяние снега яв-

ляются основными водными ресурсами для густонаселённых низменностей Центральной Азии 

(Konovalov & Shchetinnicov, 1994; Schaner et al., 2012; Chen et al., 2016) и играют важнейшую роль 

в жизни населения горных районов (Nüsser, 2017; Nüsser et al., 2019; Sitara et al., 2015). Снегозапасы 

служат резервуаром воды, особенно в зимние месяцы, и определяют сток ручьёв весной и в начале 

лета. Вклад талых вод ледников, напротив, более значителен в летний период. В настоящее время 

ежегодный вклад ледниковых талых вод с гор Тянь-Шаня в верхнее течение Сырдарьи составляет 2 % 

в год. Вклад талых ледниковых вод в Амударью составляет около 8 % в год (Amstrong et al., 2019, Huss 

and Hock, 2018). При различных сценариях выбросов вклад талых вод ледников будет уменьшаться для 

Сырдарьи и увеличиваться для Амударьи до конца столетия. Однако более важным является измене-

ние сезонного распределения стока. Большая часть талой воды станет доступной ранней весной, при 

этом для Сырдарьи общий объём притока талой воды уменьшится, а для Амударьи — увеличится. 

Следовательно, согласно климатическим прогнозам, возрастёт количество как экстремальных навод-

нений, так и экстремальных засух. Это влечёт за собой изменения в сезонности снежного покрова, 

приводящие к более раннему таянию, что, в свою очередь, может привести к увеличению весеннего и 

летнего стока в малоснежные годы или засухам (Siegfried et al., 2012, 2024). Увеличение стока может 

спровоцировать наводнения, связанные с прорывом ледниковых озёр, селевые потоки и оползни, 

которые могут нанести ущерб близлежащим населённым пунктам. 

Центральная Азия сталкивается со значительными проблемами в области водоснабжения, связанными 

с общими водными объектами, неравномерным распределением водных ресурсов и растущей конку-

ренцией между водопользователями (Munia et al., 2016; Krasznai et al., 2019). Быстрый рост численно-

сти и плотности населения привёл к увеличению потребности в воде, что усугубляет эти проблемы 

(Mankin et al., 2015). Система управления водными ресурсами раздроблена между многочисленными 

министерствами и ведомствами, и, несмотря на продолжающиеся правовые реформы, их реализации 

препятствуют пробелы в национальных стратегиях, неразвитость систем мониторинга, недостаточный 

потенциал и слабая координация (Cassara et al., 2019). Нерациональное использование удобрений и 

пестицидов ухудшило качество вод, что привело к засолению и химическому загрязнению почвы (Cas-

sara et al., 2019; Bekturganov et al., 2016). 

Истощение водных ресурсов рек Амударья и Сырдарья, вызванное чрезмерным использованием воды 

для орошения, привело к экологической катастрофе — высыханию Аральского моря к 2014 году (Dukhov-

ny & Schutter, 2011). Несмотря на сокращение доли сельского хозяйства в ВВП региона со времён Со-

ветского Союза (Hamidov et al., 2016), спрос на воду остаётся высоким, особенно для целей ирригации. 

Эти проблемы с водоснабжением в сочетании с быстрой индустриализацией повышают риск нехватки 
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воды, особенно во время частых засух, которые влияют на урожайность и могут усилить процессы эро-

зии и деградации почв (Идрисов, 2023). 

Показатель 6.4.2 «Уровень нагрузки на водные ресурсы» Целей устойчивого развития (ЦУР) позволяет 

оценить уровень водного стресса, означающий интенсивность использования пресной воды 

в отношении к имеющимся пресноводным ресурсам стран. Он показывает, сколько воды забирается 

по отношению к общему количеству запасов пресной воды, с учётом экологических потребностей 

в воде в окружающей среде. Если уровень водного стресса >= 100 %, это означает, что весь доступный 

объём воды (после учёта экологических потребностей) используется для нужд человека, что свиде-

тельствует о высоком уровне нагрузки на водные ресурсы и риске нехватки воды. Если уровень водно-

го стресса низкий (близок к нулю), это означает, что объём забираемой воды составляет малую долю 

от общего запаса, и нагрузка на водные ресурсы в этом случае минимальна. Задача выполнения пока-

зателя ЦУР 6.4.2 — снизить нагрузку на водные ресурсы в странах до уровня <= 25 % к 2030 году. 

В таблице 5.2.1 представлен уровень нагрузки на водные ресурсы в странах Центральной Азии и пока-

зано, что Туркменистан и Узбекистан испытывают высокую нагрузку, используя все имеющиеся водные 

ресурсы в нижнем течении бассейнов рек Сырдарья и Амударья в основном для нужд сельского хозяй-

ства, промышленности и питьевого и коммунального водоснабжения, а не для нужд экосистем. 

Социально-экономическое развитие стран Центральной Азии тесно связано с наличием водных ресур-

сов (Абдуллаев и соавт., 2019), что подчёркивает важность эффективности водопользования для эко-

номического роста. Эффективность водопользования, измеряемая показателем ЦУР 6.4.1, показывает 

экономическую ценность каждого кубометра воды, используемой в трёх основных секторах экономи-

ки: а) сельское, лесное и рыбное хозяйство; б) добыча полезных ископаемых, обрабатывающая про-

мышленность, производство энергии и строительство; и в) сфера услуг. Этот показатель помогает по-

нять, насколько эффективно используются водные ресурсы для получения экономических выгод. Низ-

кие значения эффективности свидетельствуют о больших потерях воды и плохом управлении водными 

ресурсами в этих секторах. Поскольку спрос на воду растёт, а изменение климата делает водные си-

стемы более уязвимыми, повышение эффективности водопользования имеет решающее значение для 

обеспечения продовольственной безопасности и поддержания устойчивого экономического роста 

в регионе. 

Таблица 5.2.1 — Уровень нагрузки на водные ресурсы в странах Центральной Азии по состоянию на 

2021 год (составлено автором по данным FAO AQUASTAT) 

Страна Уровень нагрузки на водные ресурсы по состоянию на 2021 год (ЦУР 6.4.2) 

Казахстан 34,10 % 

Кыргызстан 50,04 % 

Таджикистан 69,94 % 

Туркменистан 135,21 % 

Узбекистан 121,84 % 

 

Средний показатель эффективности использования воды в Центральной Азии составляет 3,49 доллара 

США за кубический метр (FAO AQUASTAT, 2021). Это означает, что в среднем каждый кубометр исполь-

зованной воды приносит экономике региона 3,49 доллара США. Однако в разных странах эти показа-

тели сильно различаются: в Казахстане этот показатель достигает 8 долл. США/м³, а в Кыргызстане, 

Таджикистане, Туркменистане и Узбекистане он ниже — 0,88 долл. США/м³, 1,08 долл. США/м³, 2,03 
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долл. США/м³ и 2,53 долл. США/м³ соответственно. Для сравнения, среднемировой показатель состав-

ляет 20,77 долл. США/м³, а Швейцария достигла впечатляющих 611,43 долл. США/м³. 

Для улучшения этого показателя необходимо сократить потери воды при орошении, внедрив более 

эффективные методы орошения, такие как капельное орошение, сосредоточиться на выращивании 

менее требовательных к воде культур и в целом улучшить управление водными ресурсами. По сравне-

нию с воздействием изменения климата на криосферу и водные ресурсы, эти шаги являются крайне 

важными для повышения экономической ценности воды и обеспечения её устойчивого использования 

в условиях растущего уровня нагрузки на водные ресурсы. Страны Центральной Азии являются одними 

из самых высоких потребителей воды на душу населения в мире (Dukhovny & Schutter, 2011). В табли-

це 5.2.2 показано потребление воды на душу населения в странах Центральной Азии. Средний забор 

воды на душу населения в год в Центральной Азии составляет 1359,28 м³/год на каждого жителя, по 

сравнению с общим мировым уровнем забора воды на душу населения в год 504,09 м³/год на каждого 

жителя. 

Таблица 5.2.3 — Общий забор воды на душу населения в Центральной Азии (составлено автором по 

данным FAO AQUASTAT) 

Страна Общий забор воды на душу населения (м³/год на каждого жителя), по годам 

 2017 2018 2019 2020 2021 

Казахстан 1335,04 1269,93 1260,30 1294,26 1279,61 

Кыргызстан 1251,38 1230,82 1211,33 1192,24 1173,45 

Таджикистан 894,96 1070,76 1135,48 1037,39 1015,38 

Туркменистан 4834,84 4431,94 4499,22 4198,86 2740,50 

Узбекистан 1843,75 1739,25 1636,78 1527,62 1281,11 

 

Согласно данным FAO AQUASTAT, общая численность населения стран Центральной Азии увеличилась 

с 71,3 млн человек в 2017 году до 75,9 млн человек в 2021 году, что отражает среднегодовой прирост 

по всему региону примерно на 1 млн человек. Исходя из этой тенденции, прогнозируемая численность 

населения Центральной Азии достигнет 95 миллионов человек к 2040 году, 115 миллионов человек 

к 2060 году, 135 миллионов человек к 2080 году и 155 миллионов человек к 2100 году. С другой сторо-

ны, за последние пять лет среднегодовое потребление воды на душу населения в регионе снизилось 

примерно на 108,63 кубических метров в год. 

Такой демографический рост приводит к значительному увеличению общей потребности в воде, даже 

если потребление воды на душу населения остаётся неизменным. Однако нынешний уровень потреб-

ления на душу населения недостаточен для удовлетворения растущих потребностей в воде. 

В сочетании с гидрологическими изменениями, включая уменьшение вклада ледников и снеготаяния 

в речной сток, регион сталкивается с растущей нехваткой воды и нагрузкой на водные ресурсы. Реше-

ние этих проблем требует принятия срочных мер по сокращению потребления воды на душу населе-

ния и повышению эффективности водопользования за счёт минимизации потерь. 

Ожидается, что совокупный эффект от изменения климата в Центральной Азии будет очень значитель-

ным: повышение температуры уже приводит к более раннему таянию снега, увеличению потребности 

в воде и сокращению сезона орошения. Эти изменения в сочетании с изменениями вклада талых вод 

со стороны криосферы, вероятно, приведут к более экстремальным наводнениям, засухам и общей 

нехватке воды (Sara & Proskuryakova, 2022). Нерегулируемое использование воды, особенно для оро-
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шения сельскохозяйственных угодий, и его влияние на выработку гидроэлектроэнергии (Schrader et al., 

2019) представляют собой дополнительную угрозу для региона. Уровень водохранилищ, необходимый 

для производства электроэнергии и летнего орошения, также снижается из-за продолжающегося из-

менения климата. Существующие проблемы, такие как фрагментация управления водными ресурсами, 

пробелы в нормативно-правовой базе и недостаточное внимание к вопросам экологии и здравоохра-

нения, создают дополнительную нагрузку на обеспеченность стран водными ресурсами. Регион стал-

кивается с растущей потребностью в воде в связи с ростом населения и экономическим развитием, что 

создаёт угрозу водной безопасности в регионе. 
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ГЛАВА 6. ЗАКЛЮЧИТЕЛЬНЫЕ ЗАМЕЧАНИЯ 
Засушливая зона Центральной Азии представляет собой регион, сталкивающийся со сложным взаимо-

действием экологических, социальных и экономических проблем. Страны в значительной степени за-

висят от общих водных ресурсов бассейнов рек Амударья и Сырдарья, которые по большей части пи-

таются за счёт таяния снега и ледников, что делает криосферу важнейшим компонентом водоснабже-

ния региона. 

Ожидается, что в течение оставшейся части XXI века ледники в горных хребтах Центральной Азии со-

хранят текущую, ускоряющуюся тенденцию потери массы. Согласно анализу результатов Глобальной 

модели эволюции ледников GloGEM (Huss&Hock, 2015; Bosson et al., 2023) общая потеря объёма льда 

к 2100 году в регионе составит от 54 до 88 % от общего объёма 2010 года в зависимости от реализации 

климатического сценария. Хотя на Памире самые высокие и толстые ледники переживут столетие, во 

многих регионах Тянь-Шаня и в более низких горных бассейнах Памира наблюдается выраженное от-

ступление объёма льда, вплоть до полной дегляциации к концу столетия. 

Быстрое изменение состояния ледников повлияет на гидрологический режим горных водосборов. 

Ожидается, что годовой сток достигнет максимума (из-за усиления таяния) для некоторых водосборов 

Тянь-Шаня в течение ближайших лет — десятилетия, а затем будет уменьшаться по мере отступления 

ледников. Сроки наступления такого «пика водности» зависят от современного количества льда (как  

в абсолютном выражении, так и относительно площади водосбора), поэтому водосборные бассейны 

на Памире достигнут пика водности позже. В то время как для крупнейших ледниковых комплексов 

Памира наступление пика водности ожидается после 2100 года, меньшие водосборные бассейны 

с более скромной степенью оледенения могут уже пройти через максимум стока. В рамках сезонного 

цикла к 2100 году прогнозируется сильное сокращение стока с ледников в сезон позднего таяния (ав-

густ — октябрь) на Тянь-Шане — более чем на 30 % от общего стока бассейна. На Памире, напротив, 

вклад стока в летний период существенно не уменьшится, но сместится на более ранние периоды се-

зона. 

Все прогнозы будущих изменений состояния ледников сопряжены со значительными неопределённо-

стями, обусловленными неполнотой знаний о климатических и неклиматических факторах баланса мас-

сы ледников, а также о сложных цепочках процессов и эффектах ответной реакции, определяющих 

эволюцию ледников в различных субрегионах (Barandun et al., 2020). Среди конкретных задач — точ-

ное моделирование эволюции обломочного покрова ледников (Compagno et al., 2022) и улучшение 

понимания будущего нестабильных и нелинейно реагирующих ледников в условиях меняющегося 

климата (Kääb et al., 2023). Важным приоритетом является также более точное ограничение будущих 

климатических факторов: в настоящее время по всей Центральной Азии наборы данных 

с координатной привязкой даже о климате прошлого демонстрируют серьёзные расхождения, и в них 

в значительной степени отсутствуют валидационные данные по интенсивности и сезонности осадков 

(Schöne et al., 2019; Zandler et al., 2019). Особенно важными для исследований будущего климатиче-

ского воздействия являются субрегиональные и бассейновые оценки изменений массы ледников и 

движущих сил таких процессов, а также соответствующих факторов неопределённости — путём соче-

тания наблюдений in situ с методами дистанционного зондирования и применения численных моде-

лей (Barandun et al., 2020). 

Необходимость адаптации к меняющемуся климату и, в перспективе, смягчения последствий измене-

ния климата требует более точной информации о взаимодействии атмосферы, океана и суши для бо-

лее глубокого понимания основных климатических циклов углерода, воды и энергии. 
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Для разработки национальных планов действий по адаптации к воздействию изменения климата на 

криосферу и управлению водными ресурсами необходимо сопоставить текущий сценарий вклада сто-

ка талых вод ледников с современными тенденциями развития стран Центральной Азии. Эти тенден-

ции свидетельствуют о росте населения в странах Центральной Азии, которое, согласно статистическим 

данным, может удвоиться к 2100 году. С другой стороны, предпринимаемые странами усилия по по-

вышению эффективности использования водных ресурсов и сокращению забора воды на душу населе-

ния недостаточны по сравнению с темпами роста населения и развития экономики, которые требуют 

большего количества воды. 

Показатели развития, такие как забор воды на душу населения, доля сельскохозяйственного производ-

ства в структуре ВВП по стране, объём воды на единицу ВВП, должны использоваться в качестве рыча-

гов для разработки национальных планов действий, чтобы в большей степени повлиять на корректи-

ровку пути развития стран Центральной Азии. Эти действия, направленные на снижение нагрузки на 

водные ресурсы в процессе экономического развития, позволят усилить механизмы адаптации стран 

Центральной Азии к будущим изменениям доступности водных ресурсов с помощью научно обосно-

ванных, разумных и эффективных мер, а также ускорить выполнение задач ЦУР 6 на национальном и 

региональном уровнях, тем самым способствуя укреплению водной безопасности. 
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Рисунок S1. Прогноз годового вклада талой воды ледников с 2000 по 2100 гг. для каждого водосборно-

го бассейна и всех трёх сценариев выбросов 
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Рисунок S2. Прогноз сезонного вклада талой воды ледников на 2100 год для каждого водосборного 

бассейна и всех трёх сценариев выбросов 
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Рисунок S3. Относительное изменение (от настоящего времени до 2100 года) вклада талых вод ледни-

ков в общегодовой речной сток в разбивке по водосборным бассейнам для трёх сценариев выбросов 

в мае (вверху), июне (в середине) и июле (внизу) 

  

Оптимистичный (SSP1-2.6) Промежуточный (SSP2-4.5) Пессимистичный (SSP5-8.5) 
Изменение расхода [%] к 2071–2100 гг. — май Изменение расхода [%] к 2071–2100 гг. — май Изменение расхода [%] к 2071–2100 гг. — май 

Изменение расхода [%] к 2071–2100 гг. — июнь Изменение расхода [%] к 2071–2100 гг. — июнь Изменение расхода [%] к 2071–2100 гг. — июнь 

Изменение расхода [%] к 2071–2100 гг. — июль Изменение расхода [%] к 2071–2100 гг. — июль Изменение расхода [%] к 2071–2100 гг. — июль 
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Рисунок S4. Относительное изменение (от настоящего времени до 2100 года) вклада талых вод ледни-

ков в общегодовой речной сток в разбивке по водосборным бассейнам для трёх сценариев выбросов 

в августе (вверху), сентябре (в середине) и октябре (внизу) 

  

Оптимистичный (SSP1-2.6) Промежуточный (SSP2-4.5) Пессимистичный (SSP5-8.5) 
Изменение расхода [%] к 2071–2100 гг. — август Изменение расхода [%] к 2071–2100 гг.  — август Изменение расхода [%] к 2071–2100 гг.  — август 

Изменение расхода [%] к 2071–2100 гг. — октябрь Изменение расхода [%] к 2071–2100 гг.  — октябрь Изменение расхода [%] к 2071–2100 гг.  — октябрь 

Изменение расхода [%] к 2071–2100 гг. — сентябрь Изменение расхода [%] к 2071–2100 гг.  — сентябрь Изменение расхода [%] к 2071–2100 гг.  — сентябрь 
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Рисунок S5. Потери объёма льда в масштабах всего водосбора для всех сценариев. Синий цвет на кру-

говых диаграммах указывает на изменение объёма к 2040, 2060, 2080 и 2100 годам (от самого светлого 

к самому тёмному) по отношению к объёму льда в 2020 году (число под круговой диаграммой, в км3). 


